skip to main content
10.1145/1557019.1557162acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Mining brain region connectivity for alzheimer's disease study via sparse inverse covariance estimation

Authors Info & Claims
Published:28 June 2009Publication History

ABSTRACT

Effective diagnosis of Alzheimer's disease (AD), the most common type of dementia in elderly patients, is of primary importance in biomedical research. Recent studies have demonstrated that AD is closely related to the structure change of the brain network, i.e., the connectivity among different brain regions. The connectivity patterns will provide useful imaging-based biomarkers to distinguish Normal Controls (NC), patients with Mild Cognitive Impairment (MCI), and patients with AD. In this paper, we investigate the sparse inverse covariance estimation technique for identifying the connectivity among different brain regions. In particular, a novel algorithm based on the block coordinate descent approach is proposed for the direct estimation of the inverse covariance matrix. One appealing feature of the proposed algorithm is that it allows the user feedback (e.g., prior domain knowledge) to be incorporated into the estimation process, while the connectivity patterns can be discovered automatically. We apply the proposed algorithm to a collection of FDG-PET images from 232 NC, MCI, and AD subjects. Our experimental results demonstrate that the proposed algorithm is promising in revealing the brain region connectivity differences among these groups.

Skip Supplemental Material Section

Supplemental Material

p1335-ye.mp4

mp4

150.3 MB

References

  1. G. Alexander and E. Reiman. Neuroimaging. In M.F. Weiner and A.M. Lipton, editors, The dementias: diagnosis, treatment and research, 2003.Google ScholarGoogle Scholar
  2. O. Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Ressearch, 9:485--516, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. O. Banerjee, L. El Ghaoui, A. d'Aspremont, and G. Natsoulis. Convex optimization techniques for fitting sparse Gaussian graphical models. In ICML, pages 89--96, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Berge, A.C. Jensen, and A.H.S. Solberg. Sparse inverse covariance estimates for hyperspectral image classification. Geoscience and Remote Sensing, IEEE Transactions on, 45(5):1399--1407, 2007.Google ScholarGoogle Scholar
  5. J.A. Bilmes. Factored sparse inverse covariance matrices. In ICASSP, pages 1009--1012, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Dahl, L. Vandenberghe, and V. Roychowdhury. Covariance selection for nonchordal graphs via chordal embedding. Optimization Methods Software, 23(4):501--520, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. X. Delbeuck, M. Van der Linden, and F. Collette. Alzheimer's disease as a disconnection syndrome? Neuropsychology Review, 13(2):79--92, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  8. AA.P. Dempster. Covariance selection. Biometrics, 28(1):157--175, 1972.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. Dobra, C. Hans, B. Jones, J. R. Nevins, G. Yao, and M. West. Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis, 90(1):196--212, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D.L. Donoho. For most large underdetermined systems of linear equations, the minimal 11-norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics, 59(7):907--934, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  11. M.F. Folstein, S. Folstein, and P.R. McHugh. Minimental state: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3):189--198, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 8(1):1--10, 2007.Google ScholarGoogle Scholar
  13. T.S. Gardner, D. di Bernardo, D. Lorenz, and J.J. Collins. Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301(5629):102--105, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  14. L. Heston and J. White. The vanishing mind: A practical guide to Alzheimer's disease and other dementias. W. H. Freeman and Co., New York, 1983.Google ScholarGoogle Scholar
  15. J.Z. Huang, N. Liu, M. Pourahmadi, and L. Liu. Covariance matrix selection and estimation via penalised normal likelihood. Biometrika, 93(1):85--98, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  16. S.L. Lauritzen. Graphical models. Oxford University Press, Clarendon, 1996.Google ScholarGoogle Scholar
  17. H. Li and J. Gui. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics, 7(2):302--317, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  18. Y. Lin. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(1):19--35, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  19. G. McKhann, D. Drachman, and M. Folstein. Mental and clinical diagnosis of alzheimer's disease: report of the nincdsadrda work group under the auspices of the department of health and human services task force on alzheimers disease. Neurology, 34(7):939--944, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  20. S. Molchan. The Alzheimer's disease neuroimaging initiative. Business Briefing: US Neurology Review, pages 30--32, 2005.Google ScholarGoogle Scholar
  21. A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229--251, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):127--152, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C.J. Stam, B.F. Jones, G. Nolte, M. Breakspear, and P. Scheltens. Small-world networks and functional connectivity in Alzheimer's disease. Cereb Cortex, 17:92--99, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  24. K. Supekar, V. Menon, D. Rubin, M. Musen, and M.D. Greicius. Network analysis of intrinsic functional brain connectivity in alzheimer's disease. PLoS Computational Biology, 4(6):e1000100, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. Tegner, M.K. Yeung, J. Hasty, and J.J. Collins. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proceedings of the National Academy of Sciences, 100(10):5944--5949, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  26. R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B, 58(1):267--288, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  27. P. Tseng. Convergence of block coordinate descent method for nondifferentiable maximation. J. Opt. Theory and Applications, 109(3):474--494, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer, and M. Joliot. Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. NeuroImage, 15(1):273--289, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. Wakana, H. Jiang, L.M. Nagae-Poetscher, P.C. van Zijl, and S. Mori. Fiber tract-based atlas of human white matter anatomy. Radiology, 230(1):77--87, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. Ye, K. Chen, T. Wu, J. Li, Z. Zhao, R. Patel, M. Bae, R. Janardan, H. Liu, G. Alexander, and E. Reiman. Heterogeneous data fusion for Alzheimer's disease study. In KDD, pages 1025--1033, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mining brain region connectivity for alzheimer's disease study via sparse inverse covariance estimation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining
      June 2009
      1426 pages
      ISBN:9781605584959
      DOI:10.1145/1557019

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 June 2009

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,133of8,635submissions,13%

      Upcoming Conference

      KDD '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader