
A Thread Synchronization Model for
SIP Servlet Containers

Yi Huanga Eric Cheungb Laura K. Dillona R. E. Kurt Stirewalta
aDept. of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824, US

{huangyi7,ldillon,stire}@cse.msu.edu

bAT&T Research Labs, Inc.
180 Park Avenue

Florham, NJ 07932, US
cheung@research.att.com

ABSTRACT
Multi-threaded SIP servlet containers pose difficult synchro-
nization problems to application developers. On the one
hand, if a container automatically locks resources for servlets
according to some fixed protocol, this protocol is not likely
to be appropriate for all applications. It may degrade per-
formance or even introduce deadlock in some applications.
On the other hand, leaving application programmers to code
synchronization—while flexible—is prone to error. The logic
to both infer the resources a servlet requires and then to
lock the required resources is complex and cross-cutting.
This “synchronization logic” can easily obscure an appli-
cation’s “business logic.” Interleaving synchronization code
with business code makes an application difficult to maintain
and extend.

In this paper, we elaborate key dimensions of the thread
synchronization problem for SIP servlet containers. We fur-
ther propose a novel synchronization model for SIP servlet
containers, which addresses these dimensions in a more com-
prehensive fashion than any existing model that we know of.
Our synchronization model is highly flexible. It introduces
abstractions to promote correctness, maintainabilty, and ex-
tensibility. We also describe a reference framework that im-
plements these abstractions. To illustrate the benefits of our
model, we describe a representative SIP application devel-
oped using this framework.

1. INTRODUCTION
A typical Voice-over-IP (VoIP) application consists of a set
of servlets and is deployed to a servlet container. The con-
tainer automates many low level details of the management
of sessions. An application session represents ongoing in-
stances of an application and may consist of multiple pro-
tocol sessions—e.g., Session Initiation Protocol (SIP) ses-
sions and HyperText Transfer Protocol (HTTP) sessions—
each representing an independent connection between au-

tonomous agents. Because agents send messages to initiate,
terminate, or otherwise modify sessions independently, the
container cannot predict when or in what order messages
will arrive. Thus, to ensure responsiveness, the SIP servlet
standard (JSR 289 [18]) prescribes that, upon receiving a
SIP message, a SIP servlet container determines the appli-
cation and the servlet within that application to which the
message should be routed as well as the application and pro-
tocol sessions associated with the message, and that it then
dispatches the message to a dedicated thread to execute the
servlet, thereby “processing” the message.

When writing applications for such containers, synchroniza-
tion is an important issue that complicates application devel-
opment. The need to synchronize threads executing within
a container arises because multiple threads processing differ-
ent messages may attempt to concurrently access the same
session data. Additionally, a thread may create and use data
that persists beyond the thread’s lifetime and, consequently,
that may be accessed by multiple threads. Synchronization
affects not only throughput, but also correctness, as synchro-
nization errors can result in data races and deadlock [10].

Ideally, a SIP container would automatically synchronize
threads so that each thread has exclusive access to the shared
objects needed by the servlet that it executes. However, the
container cannot know a priori what sessions a thread will
need to access in processing a message. Because servlets
are stateless, the thread may have to inspect some session
data to discover other sessions and data that it needs to
access in processing a message. Moreover, the sessions and
data it needs may change dynamically as the servlet exe-
cutes. Serializing the processing of all messages bound to
the same application session might seem like a safe synchro-
nization model for a container to implement. In fact, some
existing commercial containers adopt this synchronization
model. However, this simple model is at the same time
overly pessimistic and insufficient. It is overly pessimistic
because a single application session may contain many pro-
tocol sessions, and the sessions that different threads need
to access in processing messages bound for the same appli-
cation session are often disjoint. It is insufficient because
threads may need to access additional shared resources (i.e.,
in addition to the session data) to process some messages.
These considerations imply that synchronization of threads
cannot be entirely relegated to a container for general VoIP
applications.

Many application programmers prefer to program synchro-
nization explicitly—for instance, using monitors and mutex
locks—because doing so provides them control and flexibil-
ity. However, synchronization code is notorious for being
low level, as it is complex and error prone [14]. Moreover,
when interleaved with business code, it obscures the business
logic. As a result, applications become brittle—breaking
easily under extension and maintenance. Additionally, be-
cause servlets are stateless, SIP threads tend to incremen-
tally lock resources. Incremental locking, in turn, can lead
to deadlocks.

To better equip programmers for developing reliable and ef-
ficient SIP applications, we propose a high-level synchro-
nization model for SIP servlet containers. Our model rep-
resents the business logic of an application as a (potentially
infinite) state automaton. It introduces a synchronization
contract for representing an application’s resource needs at
a suitably abstract level. Intuitively, the synchronization
contract specifies the resources a thread should release and
acquire as the thread takes transitions.

This manner of specification makes it possible to implement
the synchronization logic for a SIP application in a mid-
dleware framework.1 Briefly, the programmer does not mix
business code with the code to infer the resources a thread
needs and to lock them. Instead, she embeds calls to the
middleware to effect transitions between states. When in-
voked, the middleware consults the application’s synchro-
nization contract and dynamically infers the resources the
thread should release and then lock prior to taking the tran-
sition. The middleware then proceeds to release the former
and negotiate on behalf of the thread to acquire the lat-
ter. During this negotiation, the middleware will block the
thread if another thread has the lock on a resource that this
thread needs. It might also block the thread and yield to
another thread contending for a resource that it needs in
order to be fair or avoid deadlock—thus, the term “negoti-
ation”. In any case, the middleware returns control to the
application only once the needed resources are acquired.

Handling synchronization in this manner offers several im-
portant benefits over existing mechanisms for synchronizing
SIP threads.

Flexibility: Rather than prescribing a fixed synchroniza-
tion protocol, our model allows the programmer to
provide a synchronization contract specifying the re-
source needs of an application. Using the contract,
the framework tailors a synchronization protocol to
the particular application. Additionally, our middle-
ware framework allows swapping of different synchro-
nization protocols and contract languages.

Traceability: Encapsulating the low level synchronization
code in a framework and embedding calls announcing
state transitions in the business code makes the busi-
ness code more easily traceable to a conventional state
diagram that describes the business logic. In turn,
this traceability makes the code easier to comprehend,
maintain and extend.

1or in a SIP servlet container itself. For expediency, our
prototype uses a framework.

Correctness: Better traceability also simplifies reasoning
about correctness of the business code. Moreover, con-
current programming experts can instantiate and vali-
date the middleware framework, which any SIP appli-
cation programmer can then reliably use. In particu-
lar, the instantiated framework can incorporate heuris-
tics for avoiding and detecting data races and dead-
locks, for enforcing fairness or priorities, and so on.

We created the Synchronization Negotiation Framework for
SIP Servlets (SNeF4SS) for initial testing that our model
achieves these goals. SNeF4SS defines a simple API for re-
alizing our model, and provides three alternative implemen-
tations of the API, each of which implements a different syn-
chronization protocol and displays different efficiency trade-
offs in different scenarios of use [11]. The framework permits
swapping synchronization protocols so that a programmer
can experiment with different protocols to determine which
is best suited for a particular application and execution envi-
ronment. SNeF4SS also provides a simple contract language.
As a pilot study, we developed a dating service application
using SNeF4SS.

This paper builds on our prior work, in which we docu-
mented two deadlock scenarios that can occur in applica-
tions deployed to a popular SIP servlet container, and pro-
posed an approach to avoiding those deadlock scenarios [10].

In sum, this paper makes the following contributions.

• It elaborates the general thread synchronization prob-
lem in SIP servlet containers, examining implications
of container architectures on this problem (Section 2.4).

• It introduces a state-based notation for declaring the
evolving synchronization needs of a SIP application
(Section 3).

• It describes SNeF4SS—a generic thread synchroniza-
tion middleware framework, which promotes correct-
ness, maintainability and extensibility and which works
with a SIP servlet container right off the shelf (Sec-

tion 4).

• It defines a high level, formal model for synchronizing
SIP threads that provides a semantic foundation for
this framework (Section 5).

2. BACKGROUND
Applications deployed to SIP servlet containers are inher-
ently multi-threaded, and these threads must access and up-
date shared resources, such as persistent session objects. To
protect these shared resources from data corruption, threads
must synchronize according to well-defined synchronization
protocols. In the SIP domain, a synchronization protocol
implements logic (1) to dynamically infer the resource needs
of threads and (2) to release and acquire resources in a man-
ner that guarantees mutually-exclusive access to a resource
or collection of resources. We refer to a protocol for (1) as a
resource inference protocol and a protocol for (2) as a locking
protocol.2 The amount of contention incurred by any given
2Lock-free approaches to synchronization, such as transac-
tional memory [13], are largely inappropriate in the VoIP

synchronization protocol is sensitive to patterns of resource
usage within the environment.

In this section, we describe the conceptual architecture of
typical SIP servlet containers, focusing on the granularity of
concurrency and the typical patterns by which concurrent
threads access shared resources (Section 2.1). To illustrate
the key concepts, we describe a simple, but representative
application (Section 2.2). We also describe the resource
sharing characteristics of this application (Section 2.3) as
well as the implied synchronization issues and their common
solutions (Section 2.4).

2.1 SIP servlet containers
A SIP servlet container provides a runtime environment for
SIP applications. To be deployed to a container, a SIP appli-
cation must define one or more servlets, which encapsulate
the logic for processing messages sent to the application by
user agents. Servlets are required to be stateless, so that
they can concurrently host multiple threads. Thus, a con-
tainer needs just one instance of each servlet of a deployed
application. To enable the use of singleton servlets, the con-
tainer encapsulates the context needed to process semanti-
cally related messages into sessions.

Container
associated

* *

managesmanages

2

processes associated

*
Thread Message Session

manages

*

Figure 1: Class diagram of relationships between a container
and the key types of resources it manages

Figure 1 depicts the relationships between a SIP servlet
container and the key types of resources that it manages.
We reify a container as an instance of a hypothetical class
Container. At a minimum, a container manages threads,
messages, and sessions, which we reify as instances of classes
Thread, Message, and Session, respectively. In practice, dif-
ferent types of threads, messages and sessions are reified as
instances of different concrete descendants of classes Thread,
Message and Session, respectively. For simplicity of expo-
sition, we refer to instances of these abstract classes when
a distinction between specific concrete subclasses is irrele-
vant to our argument. Thus, for example, a message may
be a SIP request message, a SIP response message, or even
a message of another protocol, such as an HTTP message.

A thread processes exactly one message. In contrast, a mes-
sage is associated with two sessions: a protocol session and
an application session. A protocol session encapsulates the
context needed to process messages pertaining to the same
protocol connection. For example, the INVITE message that
initiates a SIP call and a BYE message that terminates the
same call belong to the same SIP session. An application

domain. Many actions necessary for processing messages
cannot be revoked—for example, transmitting newly cre-
ated messages over the network. Also, buffering newly cre-
ated messages and postponing their transmission until the
thread successfully commits may impede application respon-
siveness.

session encapsulates the context of an application instance.
As many SIP applications (e.g., B2BUA applications) han-
dle multiple protocol connections, an application session of-
ten has multiple protocol sessions associated with it. For
brevity, we refer to the application session and the proto-
col session that a message is associated with, collectively, as
the message’s associated sessions. The container provides
an API for navigating and querying a message’s associated
sessions.

A container executes in a dedicated thread, distinct from
the threads it manages. It listens for incoming messages on
the network and for messages generated by the threads it
manages. Upon receiving a message bound for a deployed
application, it determines the servlet to route the message
to. Additionally, if the message is not associated with a pre-
existing protocol session and/or application session, it cre-
ates the appropriate sessions; otherwise, it retrieves the mes-
sage’s associated sessions. The container then dispatches a
thread to process the message, passing that thread the mes-
sage, the associated servlet, and sessions. After dispatching
the thread, the container returns to listening for other mes-
sages.

To process a message, a thread invokes a special method 3

on the servlet. The thread terminates on return from this
method. While processing the message (in this special ser-
vice method), the thread may create and send new messages
using any protocols supported by the container.

Besides sessions and messages, a thread may create and use
data that may be accessed concurrently by other threads.
For instance, a thread may create a list or any other data ob-
ject and store it to an attribute of a protocol or application
session. Subsequently, this data object will be accessible to
any thread processing a message associated with this same
session. It may also be accessible to other threads through
attributes of the sessions associated with the messages they
are processing. The example in Section 2.2 illustrates this
situation.

2.2 Dating service example
For purposes of illustration, we present a design for a SIP
application that implements a simple dating service. Briefly,
a user calls the service in order to be connected with another
user, who has also called the service for the same purpose.
Neither user knows the identity of the other in advance of
being connected. Once connected, the users may exchange
information to arrange a “date.”

Users of the dating service establish connections with one
another by dialing into a central service using SIP phones.
When a user U1 dials in, his phone creates and sends an
INVITE message m1 to the container where the dating ser-
vice is deployed. Because m1 is an initial INVITE message,
the container creates a new SIP session for m1 and deter-
mines both the application session to associate with it and
the servlet to which it should be routed for processing.4 The

3the service method, which in turn invokes either the
servlet’s doRequest or doResponse method and a message-
specific method—doInvite for an INVITE method, etc.
4The container chooses the servlet based on, for example,
information contained in m1’s header.

container then creates a new thread, which invokes a method
on this servlet to process m1.

INVITE messages are processed by first registering the user
(e.g., U1) on a centralized list of available users who wish
to be paired and then entering a choosing phase, during
which the service attempts to locate a compatible user. In
an actual dating service application, choosing requires some
degree of interaction between the service and one or more of
registered users. For instance, choosing may involve match-
ing based on user profiles and preferences followed by a se-
quence of interactions whereby the users refine selection cri-
teria and winnow down a set of candidate matches. Choos-
ing may also not succeed for an observably long period of
time. This phase must, therefore, provide some timeout
functionality so the user agent who sent the INVITE mes-
sage is not kept waiting infinately.

For brevity, the remainder of this paper focuses only on
the processing required to handle initial INVITE messages.
Having registered U1, the thread inspects the list to deter-
mine whether another user, call her U2, previously dialed
into the service and is available to be paired with U1. If such
a U2 exists and no further interaction with U1 is required,
the thread creates OK messages to send to the phones of
U1 and U2 and then updates the list to reflect that U2 is
no longer available for pairing. At this point, the processing
of m1 is complete, the servlet invocation returns, and the
thread is destroyed.

The patterns of resource access that are inherent to many
SIP applications require complex synchronization protocols
that allow threads to gain mutually-exclusive access to sets
of resources so as to prevent high-level data races [1]. To see
why, we now describe how these patterns manifest them-
selves in our dating service application by considering how
threads created to process messages from distinct user agents
share resources.

2.3 Resource sharing in this application
Perhaps the most important design decision pertaining to re-
source sharing involves how to store, access and update the
set of registered, but as yet unpaired, users. To maximize
the potential for finding a compatible partner, the service
must store information about such users in a location that
can be accessed by threads processing messages on behalf of
any user agent. A convenient means for implementing cen-
tralized resources is to have the container assign the same
application session5 to messages arriving from multiple user
agents. While convenient, contention for exclusive access to
this resource could quickly become a synchronization bot-
tleneck. To reduce contention, threads should release this
resource as soon as possible rather than hold it for the du-
ration of multi-step operations. In addition, some aspects of
the choosing phase, such as interactions between the service
and individual user agents to refine a selection, could oper-

5The Session Key Based Targeting Mechanism defined by
JSR 289 can be used to achieve this. The alternative is to
create a new application session for each newly created SIP
session. This implementation results in deadlock under the
synchronization model employed by one container currently
in use. In [10], we showed how we proposed to prevent this
deadlock.

ate on a local copy of some subset of this centralized list and
thus need not contend for it during selection refinement.

Another decision that affects resource sharing concerns how
to represent the status of each user and how to implement
a status change due to successful pairing. Consider what
must happen when a thread operating on behalf of some
user U1 wishes to commit to pairing with a peer user U2.
Another thread working on behalf of another user (e.g., U3)
may also have decided to commit to pairing with U2 at about
this same time. We could use the list of available users to
record the availability status of each user; however, because
this list is linked to the unique application session, doing so
would require users such as U1 to lock the list to change their
status and the status of U2 and users such as U3 to lock the
list to test if U2 is still available before committing. Thus,
given our decision to minimize contention for this centralized
resource, we instead employ a design that stores the status
of each individual user connection in the SIP session that
represents that connection. The pairing of U1 and U2 is
then accomplished by modifying the SIP sessions associated
with U1 and U2 and then sending messages to notify U1 and
U2 of the decision.

This decision regarding how to implement and update user
status has several important consequences: First, the thread
working on behalf of U1 to issue the OK messages to the
phones of U1 and U2 must first access the SIP sessions for
both of these user agents. When it has acquired both ses-
sions and determined that U2 has not already been paired
with another peer user agent, it can safely record changes
in their status by, for example, caching a reference to U1’s
SIP session in U2’s SIP session and vice versa. Second, be-
cause changes in status are made at the level of SIP sessions,
the centralized list will need to be updated once a change
in status is made. This design reduces contention for the
centralized list during pairing, because only one of perhaps
many suitors will need to lock the list in order to commit to
a pairing. All other suitors will find that they are too late
to commit to U2 when, after locking U2’s SIP session, they
discover her status has changed to unavailable. While many
suitors may block contending for this SIP session, they are
not contending for the centralized application session and
thus not blocking the progress of other parties that are not
interested in U2. Finally, another consequence of this design
is that the centralized list will become stale for short peri-
ods of time between when the SIP sessions of a couple are
updated but before the master list can be re-acquired and
updated.

2.4 Synchronization issues
With these design decisions in mind, we now examine the
requirements on a locking protocol that guarantees mutual
exclusion while avoiding deadlock and starvation. In our
scenario involving the processing of message m1 on behalf of
user U1, processing begins by locking the application session
so as to register U1 and the SIP session associated with U1.
The SIP session associated with U1 may then be released be-
fore the thread enters the choosing phase, thereby allowing
other users to commit to partnering with U1; however, the
thread processing m1 should retain the lock on the applica-
tion session in order to access the list of available users. In
the choosing phase, the thread processing m1 should release

the application session immediately after finding a compat-
ible user U2. After releasing the application session, this
thread should then lock the SIP sessions associated with U1

and U2 to modify their status appropriately and create and
send out OK messages to notify U1 and U2 of the decision.
This thread must then re-acquire the application session to
mark U1 and U2 as unavailable.

This scenario illustrates two requirements on the locking
protocol. First, it must be able to acquire multiple resources,
e.g., “the application session AND the SIP session associated
with U1,”“the SIP session associated with U1 AND the SIP
session associated with U2,” etc., without incurring deadlock.
These resources may even include objects other than ses-
sions. Second, the resources to lock must be known a priori.
However, it is challenging to achieve this. For instance, the
thread processing m1 has no way of knowing it needs to ac-
quire the SIP session associated with U2 until U2 is identified
in the choosing phase. Even in an example as simple as this
dating application, synchronization requirements mandate
a complex locking protocol. Before presenting our solution,
we now briefly close this section by discussing why two com-
mon approaches to locking protocols—manual design and
container-managed synchronization—are insufficient.

A programmer may manually implement a locking proto-
col by writing code that explicitly acquires and releases re-
sources. While powerful, this approach often fails in prac-
tice because correct and efficient protocols are very diffi-
cult to design, especially when (1) synchronization involves
the atomic acquisition of multiple resources and (2) not
all needed resources are known a priori. For sake of cor-
rectness, programmers often incorporate general deadlock-
free strategies for acquiring multiple resources. Interleaving
these strategies with in-progress resource inference further
complicates the design. Two such strategies that are com-
monly used include gatekeeper strategy and resource number-
ing strategy. These strategies are described in detail in [10,
11]. However, depending on the threading characteristics of
an application, these strategies may introduce unnecessary
thread contention and unfair thread scheduling. Moreover,
the optimal choice of strategy may become apparent only
during the production stage, once the strategy has been fully
integrated into the application code [11].

Another approach involves container-managed synchroniza-
tion policies, whereby the container instructs a thread to
acquire a set of resources prior to processing a message and
to hold these resources until message processing is com-
plete. Such policies are predominant in existing container
implementations. However, as our dating service example
illustrates, the container cannot determine the exact set of
resources merely by examining the message. Under these
circumstances, the container ends up acquiring and hold-
ing only a subset of the resources a thread needs to process
a message. Because a thread’s resource needs change as it
processes a message, these lock-and-hold strategies are prone
to inefficiency. Worse, in order to acquire the additional re-
sources, a programmer must manually implement a custom
synchronization protocol. In [10], we described how custom
protocols operating alongside container-managed protocols
can lead to unrecoverable deadlocks and described two cases
that had occurred in practice.

To recap, the evolving synchronization needs of SIP applica-
tions complicate the design of the locking protocols needed
to protect access to shared resources. Our contribution uses
declarative specifications of evolving resource needs to guide
the instantiation of a “synchronization middleware” frame-
work to yield a deadlock-avoiding locking protocol that guar-
antees mutual exclusive access to resources as prescribed by
the declarative specification.

3. SPECIFYING LOCKING PROTOCOLS
We now introduce the first component of our two-part solu-
tion, namely a state-based notation for declaring the evolv-
ing synchronization needs of a SIP application. The no-
tation allows application designers to specify the behavior
of message-processing threads using a variant of the UML
StateChart notation where the states represent meaningful
abstract states in the business logic. We extend this nota-
tion by allowing each state to be adorned with sets of ex-
pressions that identify the resources the application requires
while executing within that state.

client = objectify(message)
r = register(client)

do /
Registering Choosing

do /
peer =

chooseUser(client)

do /
sleep(5)

Sleeping
do /

c = isAvailable(client)

CheckingClient
[peer != null]

[c && !p]

CheckingBoth

c = isAvailable(client)
p = isAvailable(peer)

do /

[c && p]

DoingPair

do / pair(client, peer)

[!c]

Unregistering

unregister(peer)
do / unregister(client)

TryingToChoose

{ }

[r]

{ }{message.SS}

{message.AS.list}

[c] [peer == null]

{ }

TryingToPair
[!r]

{message.SS}
[!c || timeout]

{message.AS.list}

{ }

{message.SS, peer.SS}

Figure 2: A state diagram of the dating service application

Figure 2 depicts a portion of our model of the dating ser-
vice application. This portion focuses on the synchroniza-
tion needs of threads that are spawned to process initial
INVITE messages. Additional components of this model
provide similar diagrams (not shown) that depict the evolv-
ing synchronization needs of threads that are spawned to
process other messages. The adornments appear as sets
of navigation expressions, listed in curly braces below the
state to which they apply. A navigation expression speci-
fies how the thread navigates the sessions associated with
a message to locate a resource. We reserve the identifier
message to denote the message dispatched to a thread and
the attributes SS and AS to denote the SIP and application
sessions associated with a given message. Data associated
with session objects is specified by navigating through an
attribute of the session object. Suppose, for instance, that
list names an attribute of an application session object.
Then the navigation expression message.AS.list denotes
the object retrieved by navigating from the application ses-
sion associated with the message dispatched to this thread
through this list attribute.

Threads modeled by this diagram begin in the Registering

state, as indicated by the UML start-state indicator (i.e.,
the black spot with an outgoing arrow). This state encap-

sulates a do activity, i.e., a computational process that per-
sists in time. Here, the activity comprises two sub-activities.
First, the message is objectified to produce an object (called
client) that represents the user agent6 that sent the mes-
sage. This user agent, which corresponds to U1 in our ex-
ample from Section 2.2, is registered so that other users
can know that this user is available for pairing. Registration
involves adding client to a list that records users who have
dialed in and are not yet paired. This list is linked to the
application session through the session’s list attribute.

Because this list of users is a shared resource, a thread work-
ing in the Registering state requires exclusive access to it
while in that state. In fact, this list is also required in the
Choosing state, which the thread enters after successfully
registering client. Successful registration is determined
by a boolean return value r, which is used to guard the
transition from Registering to Choosing. To record this
thread’s need to hold exclusive access to the list while in
these two states, our model provides the super-state Try-

ingToChoose which we adorn with the navigation expres-
sion message.AS.list. Of course, to navigate to the list

attribute, the thread must also access the application session
itself. Super-state adornments are inherited by all sub-states
nested within. Thus, when executing within the Register-

ing state, a thread requires exclusive access to the list of
registered users and the SIP and SIP application sessions
associated with the message being processed.

Continuing with our example, a thread in the Choosing

state performs an activity represented here as a call to the
function chooseUser, which returns a user agent (peer).
Next, it checks that the client and the chosen peer are both
available (in CheckingBoth) and pairs them (in DoingPair),
thereby creating and sending the OK messages. Finally, the
thread “unregisters” client and peer (i.e., removes these
user agents from the list stored in the application session’s
list attribute) and terminates (in the sink state).

Other paths through the state diagram correspond to other
usage scenarios. For example, if client is the only user
agent registered when a thread attempts to choose a peer
(i.e., in Choosing, the call to chooseUser returns null), then
the thread sleeps for at least five seconds. After this delay,
the thread checks that client is still available (in Check-

ingClient). If unavailable (i.e., c is false), the thread ter-
minates. This case occurs if some other thread selects and
successfully pairs with client while this thread is sleeping.
“Checking” states, like CheckingClient and CheckingBoth,
are characteristic of applications deployed to SIP containers
because of the asynchrony inherent in the container archi-
tecture.

Notice that our notation allows resource needs to be adorned
with super-states. Such a specification is not equivalent to
replicating the super-state needs in the adornments of all
nested sub-states because the former indicates that resources
should be held continuously during sub-state transitions, but
the latter does not. To understand the implications of these
semantics, notice that both states CheckingBoth and Do-

ingPair require exclusive access to client and peer SIP

6Here, the agent is assumed to be a SIP phone.

sessions. In addition, state DoingPair is designed to assume
that the condition checked in state CheckingBoth contin-
ues to hold throughout the transition from CheckingBoth

to DoingPair. For this assumption to hold, other threads
must not be allowed to access and/or modify the SIP ses-
sions associated with either client or peer, as doing so
may change their availability and thus invalidate the check
performed in CheckingBoth.7 Had we designed the system
without the use of TryingToPair, instead copying the adorn-
ment of TryingToPair into the adornments of its sub-states,
then the resources would be released upon exit of Checking-
Both and then re-acquired on entry to DoingPair. A system
implemented according to such a specification would allow
another thread to acquire and modify either or both of these
SIP sessions during this thread’s transition from Checking-

Both to DoingPair.

To summarize, our notation allows for the unambiguous
specification of sets of resources needed by threads in each
distinct abstract state of the business logic implemented by
that thread. Because these needs may change when a thread
transitions from one state to another, the model captures the
evolution of these needs throughout the thread’s lifetime. Fi-
nally, the actual resources that are needed are automatically
inferred according to the navigation expressions.

4. SNeF4SS
We advocate encoding the evolving synchronization needs
of a SIP application into explicit synchronization contracts,
which reify the state-based specifications of evolving resource
needs described in Section 3. To assess the efficacy of this
approach, including whether such a specification could be
expressed separately and then integrated cleanly with the
business logic of a SIP application, we developed the Syn-
chronization Negotiation Framework for SIP Servlets (SNeF-
4SS). For expediency, we implemented SNeF4SS as a mid-
dleware framework, rather than modifying an existing con-
tainer or creating our own. We tested this framework on the
dating service application using the Sailfin container.8 For
brevity, we present here a simplified version of this applica-
tion.

SNeF4SS encapsulates synchronization code in special ob-
jects, called negotiators, which consult an application’s syn-
chronization contract to infer the resources needed by a
given thread as it cycles through its abstract business-logic
states. SNeF4SS provides an API for creating negotiators
and associating them with messages and for notifying ne-
gotiators as a thread transitions among these states (Sec-

tion 4.1). A framework programmer instantiates SNeF4SS
with a specific contract language and for negotiators that
negotiate contracts written in that language. Our reference
implementation provides a simple contract language (Sec-

tion 4.2) and implementations for three types of negotia-
tors, each implementing a different locking protocol (Sec-

tion 4.3). Thus, framework programmers can instantiate
SNeF4SS with implementations from our toolkit or write
their own. In contrast to a framework programmer, an ap-
plication programmer writes the servlet code expressing the
business logic (Section 4.4). The servlet code embeds calls

7This is an example of a time of check to time of use error.
8Sailfin: https://sailfin.dev.java.net

on a negotiator to effect transitions between thread states.

4.1 Framework overview

ApplicationServlet

MessageServlet

Container API

Application

SNeF4SS API

** *

*

SNeF4SSServlet

*

SNeF4SSNegotiator SNeF4SSFactory SNeF4SSContract

getNegotiator(Message) getState()
enter(String)
bind(String, Object)

createNegotiator()
createContract()

toRelease(String, String)
toAcquire(String, String)

<<interface>><<interface>><<interface>>

Figure 3: Class diagram of SNeF4SS API

The class diagram in Figure 3 describes the SNeF4SS API.
A framework programmer supplies implementations for all
interface classes, marked by the <<interface>> stereotype,
in the SNeF4SS layer (middle layer). An application pro-
grammer uses only those SNeF4SS-layer classes that are on
the left of the dashed vertical line.

The SNeF4SS layer provides a variant for each concrete
servlet class in the container API layer. For brevity, we
represent all of these container-layer classes, including Sip-

Servlet and HttpServlet, by the abstract class Servlet

and all of the SNeF4SS layer variants by the abstract class
SNeF4SSServlet.9 Each SNeF4SSServlet class wraps var-
ious methods of its base class. For instance, class SNeF-

4SSSipServlet wraps a method that the container invokes
when it deploys the application to initialize the servlet con-
text, extending this method to bind the servlet to the (sin-
gleton) SNeF4SSFactory object and a SNeF4SSContract ob-
ject.10 Class SNeF4SSSipServlet also wraps methods that a
SIP thread automatically invokes upon starting up. Among
other things, it extends each such method to create a ne-
gotiator—i.e., an object of type SNeF4SSNegotiator—and
binds the message being processed to this negotiator.

In SNeF4SS, the application programmer provides a con-
tract specification in the application’s deployment descrip-
tor. SNeF4SS loads this specification into a SNeF4SSCon-

tract object upon deployment of the application, as indi-
cated above. The contract specification designates a set of
thread states and a mapping from thread states to sets of
navigation expressions to use for inferring the resources a
thread needs to hold while in a state. It also specifies the
initial thread state for a thread.

A negotiator maintains the state of the thread processing
a message and maintains bindings for the names in navi-
gation expressions. Briefly, a thread invokes the getState

method on its negotiator to learn its current state, the bind

9Names of abstract classes are set in an oblique font.
10Using a factory to create negotiators and contracts insu-
lates the application code from details of the specific con-
tract language and implementation. This allows the frame-
work programmer to swap out different contract languages
and implementations without requiring changes by the ap-
plication programmer. Further discussion of this capability
is beyond the scope of this paper.

method to bind a name to an actual resource, and the enter
method to enter a new thread state. In the enter method,
the negotiator consults the contract to infer what resources
to release and then acquire. In case other threads hold some
of the resources to be acquired, the negotiator blocks the
thread until the resources become available. Thus, when ex-
ecuting in a state, a thread can safely assume it holds the
resources designated by the specification of the application’s
contract.

4.2 Contracts
We implemented a simple XML-based language for speci-
fying contracts. Figure 4 shows part of a contract spec-
ification. Line numbers are for reference purposes; they
are not part of the specification. The specification declares
the thread state TryingToChoose (lines 3–17) as well as its
nested states Registering (lines 5–10) and Choosing (lines
11–13) from Figure 2. It also declares a rule for starting a
thread in Registering.

1 < contract>

2 <t h r ead s ta t e de c l >

3 <th r ead s ta t e>

4 <state name>TryingToChoose</state name>

5 <th r ead s ta t e>

6 <state name>Reg i s t e r i ng</state name>

7 <s t a t e need s>

8 <need type=”ps”>message . SS</need>

9 </s ta t e need s>

10 </th r ead s ta t e>

11 <th r ead s ta t e>

12 <state name>Choosing </state name>

13 </th r ead s ta t e>

14 <s t a t e need s>

15 <need type=”ob j e c t”>message .AS. l i s t </need>

16 </s ta t e need s>

17 </th r ead s ta t e>

18 </t h r ead s t a t e dec l >

19 . . .
20 < i n i t i a l t h r e a d s t a t e r u l e d e c l >

21 < i n i t i a l s t a t e r u l e >

22 <condi t ion>

23 <equal>
24 <var>message . param . method</var>

25 <value>INVITE</value>

26 </equal>
27 </condit ion>

28 <t a rg e t s t a t e >

29 <state name>Reg i s t e r i ng</state name>

30 </t a r g e t s t a t e >

31 </ i n i t i a l s t a t e r u l e >

32 . . .
33 </ i n i t i a l t h r e a d s t a t e r u l e d e c l >

34 </ contract>

Figure 4: Example synchronization contract

A declaration for a super state embeds declarations for the
states nested directly within it. Thus, TryingToChoose con-
tains Registering and Choosing. A state-needs section
in the declaration for a state lists one or more navigation
expressions—for use in inferring the resources a thread needs
to hold when executing in the state. The reserved identi-
fiers message, SS, and AS denote, respectively, the message
the thread is processing, an attribute referencing the SIP
session associated with this message, and an attribute refer-
encing the application session associated with this message.
The parameter type indicates the type of a resource: ps

signifies a protocol session, as an application session, and
object a non-session object. Other reserved identifiers are
not shown here and thus are omitted for brevity.

For example, the state-needs section (lines 14–16) for Try-

ingToChoose indicates that, while in this state, a thread
needs exclusive access to the object referenced by the list

attribute of the message’s application session. By default,
we assume it also needs to hold the sessions along the access
path to a needed resource. Thus, in this example, the thread
also needs to hold the message’s application session while in
TryingToChoose. Moreover, in state Registering, a thread
also needs the message’s SIP session (lines 7–9), whereas, in
Choosing, it does not need any additional resources besides
the list and the application session. To enter Register-

ing, therefore, a thread should acquire both the application
session, the SIP session associated with the message and
also the list of registered users. To transition from Regis-

tering to Choosing, a thread should release the SIP session,
but not the list or application session. Finally, in taking a
transition out of TryingToChoose, a thread should release
all the resources it currently holds.

An initial state rule specifies a state and a condition for a
thread to start executing in that state. The initial state rule
(lines 21–31) of Figure 4 indicates that, if a thread is dis-
patched with an INVITE message, it should begin execution
in Registering.

Our implementation of SNeF4SS loads the XML description
of a servlet’s contract into an object upon deployment of an
application. We call this object a static contract because it
designates only static navigation expressions, not the actual
resources. When a thread starts up, it automatically invokes
its negotiator (in an initialization method wrapped by SNeF-

4SSSipServlet) to initialize the thread state.

4.3 Negotiators
The negotiator object associated with a message keeps track
of the state of the thread processing the message, the re-
sources the thread is holding (and thus that it can safely
access), and the resources the thread needs to acquire. A
thread automatically invokes a method11 on its negotiator
on starting up to enter its initial thread state. The negotia-
tor evaluates the conditions of the initialization rules in the
static contract. It selects the target state of the first rule
whose condition is true. It then queries the static contract
for navigation expressions designating the resources to ac-
quire before returning control to the servlet. If necessary, it
blocks the thread while inferring and acquiring the needed
resources.

A thread obtains a handle to its negotiator object by invok-
ing the getNegotiator method in the SNeF4SSSipServlet

API. To change its state, a thread invokes its negotiator’s
enter method with the name of the target state. In enter,
the negotiator infers the resources to be released and releases
them. Then, it infers and attempts to acquire any resources
it does not currently hold, but needs in the target state. If
some of the needed resources are unavailable, it blocks the
thread. Thus, on return from enter, the thread can safely
access these resources until it enters a new state.

Our SNeF4SS toolkit provides three alternative negotiator

11not shown in Figure 3 as framework programmers and
application programmers do not use it.

implementations. The first two encapsulate two standard
protocols for avoiding deadlock while incrementally acquir-
ing resources: resource numbering and gate keeper. A prob-
lem affecting throughput with both of these protocols is
that, in trying to acquire a set of resources, a thread may
acquire some of the needed resources and then block un-
til other needed resources become available. This practice
causes threads that need resources a blocked thread is hold-
ing to also block. In contrast, the protocol encapsulated
by our third negotiator implementation avoids such need-
less blocking through using a more intricate two-phase lock-
ing strategy based on that used in Szumo [3, 2]. Briefly,
in the Szumo protocol, a negotiator does not acquire any
new resources until it is able to “claim” all the resources it
needs. Then, rather than acquire the claimed resources in-
crementally, it acquires all of them in one atomic step. If
the negotiator blocks the thread, other threads may acquire
resources that the thread has claimed, in which case the
negotiator needs to reclaim them when they again become
available. The Szumo negotiators permit more concurrency
but incur extra overhead.

Because negotiators encapsulate resource inference and a
locking protocol, they can implement complex deadlock de-
tection, recovery and prevention heuristics. For instance, the
details of claiming resources in Szumo are complex because
of the need to avoid deadlock and be fair—the protocol uses
timestamps to prioritize contending claims for the same re-
source and wound-wait and backoff strategies to yield if the
highest priority negotiation stalls. Implementing the Szumo
protocol in applications is error prone, and beyond the abil-
ities of many application programmers. Separating the re-
source inference and acquisition code from the business code
makes it possible to reuse the former with different applica-
tions.

4.4 Coding a servlet
To use SNeF4SS, a servlet inherits from the appropriate
derivative of SNeF4SSServlet and implements the business
logic. Each method for processing a message obtains a han-
dle to its negotiator in order to notify the negotiator to bind
names to resources and change thread states.

Figure 5 illustrates part of the servlet code for the dating-
service application. The servlet inherits from SNeF4SSSip-

Servlet (line 2). A code snippet from the doInvite method,
which a thread automatically invokes to process an INVITE
message, is shown. The servlet obtains a handle to its nego-
tiator (lines 6–7), and then objectifies and attempts to reg-
ister the client user agent (lines 9–12). If registration fails,
the thread sends a failure response to the client user agent
and terminates (lines 10–12); otherwise, the servlet enters
Choosing (line 14) and attempts to choose a peer (line 15).
If chooseUser returns a peer user agent, the servlet binds a
reference to the peer to a designator, peerSS, that is speci-
fied for TryingToPair state in the contract (lines 16–17) and
enters CheckingBoth (line 18).

We elide much of this example due to space limit. The
portion shown, however, illustrates the close correspondence
between the state diagrams and the code. No low level syn-
chronization code clutters the business code. Instead, the
call-outs to SNeF4SS clearly demarcate state transitions.

1 pub l i c c l a s s Dat ingSipServ let
2 extends SNeF4SSSipServlet {
3 . . .
4 void do Inv i t e (S ipServ letRequest message)
5 {
6 SNeF4SSNegotiator ngtr =
7 ge tNego t i a to r (message) ;
8 . . .
9 User c l i e n t = ob j e c t i f y (message) ;

10 i f (! r e g i s t e r (c l i e n t)){
11 message . createResponse (50 0) . send () ; return ;
12 }

13 whi le (t rue){
14 ngtr . en t e r (”Choosing ”) ;
15 peer = chooseUser (c l i e n t) ;
16 i f (peer != nu l l){
17 bind (”peerSS ” , peer . g e tS ipSe s s i on ())
18 ngtr . en t e r (”CheckingBoth ”)
19 . . .
20 }
21 . . .
22 }

Figure 5: Snippet of servlet code using SNeF4SS

This traceability makes the servlet code easier to under-
stand, maintain and extend than code that interleaves re-
source inference and locking with business code.

5. SYNCHRONIZATION MODEL
To provide a semantic foundation for our SNeF4SS API, we
developed a formal model of thread synchronization based
on contracts. In brief, we model the business logic by a tra-
ditional state automaton. We then extend this automaton
with a synchronization contract and define what it means
for an execution of the automaton to satisfy the contract.
This section formalizes these notions.

Definition 1. A business automaton consists of

• a set of states, S

• a set of transitions, T

• a set of initial states, I ⊆ S

• a source mapping, source : T → S

• a target mapping, target : T → S

In the sequel, we assume a business automaton is given. As
customary, we regard the business automaton as defining a

ternary transition relation, →, and we write s
t
→ s′ to mean

(s, t, s′) is in the transition relation, for s, s′ ∈ S, t ∈ T . The
transition relation formalizes how control passes from one
state to another as a result of taking transitions. Then, from
the transitive closure of this relation we derive an execution

relation. For s, s′ ∈ S and t̄ ∈ T ∗, we write s
t̄

→ex s′ to
mean (s, t̄, s′) is in the execution relation, and we call t̄ ∈ T ∗

a transition trace. Intuitively, this assertion expresses that,
starting from s, the transitions in t̄ may be taken, in order,
with the effect of leaving control in s′. In formalizing these
and subsequent concepts, we write Λ for the empty sequence;
ā for a (finite) sequence of elements from a set A, ā ∈ A∗;
(ā · a) for the sequence produced by appending a ∈ A to the
end of ā ∈ A∗; and, if ā 6= Λ, last(ā) for its last element.

Definition 2. The transition relation, →, is the smallest

relation in S × T × S such that s
t
→ s′ iff source(t) = s and

target (t) = s′, for t ∈ T and s, s′ ∈ S.

The execution relation, →ex , is the smallest relation in

S × T ∗ × S such that s
Λ

→ex s, and s
t̄

→ex s′ and s′
t
→ s′′

implies s
(t̄·t)
→ex s′′.

The states in a business automaton represent global states,
not local states of individual threads. In contrast, the states
in Figure 2 represent local states of threads. Intuitively,
a global state in a business automaton for our dating ser-
vice application is viewed as defining a set of active threads;
associating each active thread with a thread state (i.e., a
state-diagram state), a message being processed, and a SIP
session and application session associated with this message;
associating each SIP and application session with attributes
and attribute values; and so on. Transitions of the state dia-
gram are then viewed as inducing transitions on these global
states, where we assume an interleaved model of execution.
In Definition 1, we abstract away from these application-
specific details. Because the business automaton does not
express any information needed to synchronize threads, its
executions are not synchronized in any fashion.

To enable judging if an execution is correctly synchronized,
we augment a business automaton with information about
threads and the resources that should be released and ac-
quired when taking transitions.

Definition 3. A synchronizable business automaton con-
sists of

• a business automaton

• a set of threads, TH

• a set of resources, R

• a partition of T , P ⊂ 2T

• a thread mapping, m : P → TH

• a contract, (cr, ca) ∈ (T → 2R) × (T → 2R)

For t ∈ T , we write [t] for the equivalence class in P con-
taining t, i.e., for the set satisfying [t] ∈ P and t ∈ [t]. The
partition and thread mapping formalize that we use an inter-
leaved model of computation—i.e., that a global transition
occurs when a thread takes a local transition (e.g., a tran-
sition in a state diagram). Intuitively, [t] models the local
transition that produces global transition t and m([t]) mod-
els the thread that takes local transition [t], for t ∈ T . As
a notational convenience, from here on, we show the thread
that takes a transition as a superscript when naming a tran-
sition. For example, we write tπ ∈ T to denote a transition
taken by thread π, i.e., satisfying m([tπ]) = π.

The contract in a synchronizable business automaton pro-
vides information about the resource requirements of threads.
Namely, for a transition tπ ∈ T , the contract specifies the
set of resources cr(t

π) ⊆ R that π should release and the set
of resources ca(tπ) ⊆ R that π should acquire when it takes
the transition tπ . We use this information to judge if an ex-
ecution of the business automaton satisfies the contract. For

the remaining discussion, assume a synchronizable business
automaton is given.

We seek to define a sub-relation of the execution relation
formalizing that, if threads release and acquire resources in
accordance with the contract, then executing the transition
trace does not violate mutual exclusion. We refer to this
relation as the synchronized execution relation, and write

s
t̄

→syex s′ to mean (s, t̄, s′) belongs to the synchronized ex-
ecution relation, for s, s′ ∈ S and t̄ ∈ T ∗. The definition of
this relation is complicated by wanting to express, not just
that the protocol used to synchronize threads guarantees
the contract is satisfied, but also that it does not “intro-
duce” deadlocks. To achieve this latter goal, we need a view
of executions that encodes, not just the order in which tran-
sitions occur, but also the points at which the resources that
a thread releases become available for other threads to ac-
quire. When a thread decides to take a transition that will
release a resource, then that resource should be available for
some other thread to acquire.

To provide this view, we regard a thread π as taking a local
transition in two (atomic) steps: in the first step, it releases
any resources in cr(t

π) that it holds and, in the second, it
acquires all resources in ca(t′π) that it does not already hold,
where [tπ] = [t′π].

Definition 4. A transition tπ ∈ T induces a release step,
denoted tπ

rel , and an acquire step, denoted tπ

acq . Addition-
ally, Trel denotes the set of all release steps, Tacq denotes
the set of all acquire steps, and Tstep denotes their union,
Tstep = Trel ∪ Tacq .

As a notational convention, we write t̄step for a sequence of
steps, t̄step ∈ T ∗

step .

We then“refine” the execution relation of Definition 2 to ex-
press that taking a transition involves first a release step and
then an acquire step. In defining this relation, the function
proj

π
: T ∗

step → T ∗

step projects a step trace on the steps taken
by thread π.

Definition 5. The unsynchronized step-execution rela-
tion is the smallest relation →un ⊆ S × T ∗

step × S, satisfying

1. if s ∈ S, then s
Λ

→un s

2. if s
t̄step
→un s′, s′

t
π

→ s′′, and either proj
π
(t̄step) = Λ or

last(proj
π
(t̄step)) ∈ Tacq , then s

(t̄step·t
π

rel)→un s′

3. if s
t̄step
→un s′, s′

t
π

→ s′′, last(proj
π
(t̄step)) ∈ Trel , and

[tπ] = [last(proj
π
(t̄step))], then s

(t̄step·t
π

acq)
→un s′,

for s, s′, s′′ ∈ S, t̄step ∈ T ∗

step, and tπ ∈ T .

Here, (2) expresses that π may perform the release step for
transition tπ if tπ is enabled and the last step π performed,
if any, was an acquire step; and also that doing so has no
effect on the state of the business automaton in which control
resides. In contrast, (3) expresses that, when π performs an
acquire step, control passes to the target state, and that π

can perform the acquire step of a transition tπ only if the
previous step it performed was a release step of a transition
representing the same local transition as tπ.

To formalize the correspondence between step traces and
transition traces, we introduce a function that “lifts” a step
trace to a transition trace.

Definition 6. The function lift : T ∗

step → T ∗ satisfies lift(Λ) =
Λ, lift(t̄step ·t

π

rel) = lift(t̄step), and lift(t̄step ·t
π

acq) = (lift(t̄step)·
tπ), for t̄step ∈ T ∗

step, tπ

rel ∈ Trel , and tπ

acq ∈ Tacq .

In essence, a step trace represents the trace in which a tran-
sition is viewed as taking place upon performing the transi-
tion’s acquire step.

The following lemma expresses the sense in which the un-
synchronized step-execution relation refines the execution
relation. It is a straightforward consequence of the prior
definitions.

Lemma 7. s
t̄step
→un s′ only if s

lift(t̄step)
→ex s′, for s, s′ ∈ S and

t̄step ∈ T ∗

step. Conversely, s
t̄

→ex s′ only if there exists a step

trace, t̄step ∈ T ∗

step, such that t̄ = lift(t̄step) and s
t̄step
→un s′, for

s, s′ ∈ S and t̄ ∈ T ∗.

In formalizing how a protocol should synchronize threads, we
use a holds function to associate threads with the resources
they hold—i.e., have acquired and have not yet released. We
also define a function to express the set of resources that are
free in a holds function.

Definition 8. A holds function is a function from threads
to sets of resources, h : TH → 2R.

The function free : (TH → 2R) → 2R satisfies free(h) =
R −

S

h(TH), for h : TH → 2R.

In essence, the resources free in a holds function are those
resources that no thread holds.

We express the meanings of release and acquire steps by
defining how step traces modify holds functions.

Definition 9. The holds relation is the smallest rela-
tion, →ho ⊆ (TH → 2R) × T ∗

step × (TH → 2R), satisfying

1. h
Λ

→ho h

2. if h
t̄step
→ho h′, then h

(t̄step·t
π

rel)→ho h′[π/(h′(π) − cr(t
π))]

3. if h
t̄step
→ho h′ and ca(tπ) ⊆ free(h′), then

h
(t̄step ·t

π

acq)
→ho h′[π/(h′(π) ∪ ca(tπ))]

Informally, (2) expresses that performing the release step
of tπ frees any resources in cr(t

π) that π holds, and (3)
expresses that π can take the acquire step of tπ only if no
other threads hold any resources in ca(tπ) and that it holds
these resources upon doing so.

Composing the unsynchronized step-execution relation with
the holds relation produces the synchronized step-execution
relation, which defines what it means for a step trace to be
synchronized.

Definition 10. The synchronized step-execution relation
is the relation

→
sy

⊆ (TH → 2R) × S × T ∗

step × (TH → 2R) × S

satisfying (h, s)
t̄step
→sy (h′, s′) iff h

t̄step
→ho h′ and s

t̄step
→un s′.

We then define the synchronized execution relation by lifting
synchronized step traces and hiding the holds functions. We
also require that, before starting execution, the state and
holds function are properly initialized.

Definition 11. The synchronized execution relation,

→
syex

⊆ S × T ∗ × S,

satisfies s
t̄

→syex s′ iff s ∈ I and there exists a sequence of
steps t̄step ∈ T ∗

step, a holds function h : TH → 2R, and a

state s ∈ S such that t̄ = lift(t̄step) and (∅, s)
t̄step
→sy h, s′.

Thus, a synchronizable business automaton determines a
synchronized execution relation expressing that, starting from
an initial state, a transition trace can be executed while sat-
isfying the contract.

This definition captures two fundamental properties of any
implementation of SNeF4SS. First and foremost, it expresses
that negotiators must synchronize threads so that the con-
tract is satisfied. Thus, on entering a state, a thread can
assume it holds all and only the resources that the contract
stipulates it needs, and that it retains exclusion on these
resources until it leaves the state. Second, this definition
expresses that negotiators must not “introduce” deadlock.
This property follows from the atomicity of the acquisition
step. Modeling acquisition as an atomic step requires that a
negotiator does not hold any resource it needs to acquire in-
definitely unless it eventually acquires all of them (at which
point the entire set of needed resources is viewed as having
been “atomically” acquired).

6. RELATED WORK
Our work capitalizes on separating synchronization logic
from business logic in order to facilitate programming of
SIP applications. Declarative synchronization contracts are
what make separation possible. We are not aware of research
that addresses synchronization problems specifically in the
SIP domain. Frameworks and methodologies have been de-
veloped, however, to facilitate handling of the complexity
caused by SIP and other communication protocols. This
section overviews related work on separating synchroniza-
tion concerns from business concerns in programming gen-
eral concurrent systems, and then briefly discusses a couple
of recent approaches to raise the level of abstraction for SIP
programming.

Separation of concerns is a general principle in software engi-
neering for handling complexity in applications [15]. Our ab-
stract synchronization model is motivated by Meyer’s Design-
by-Contract principle [16] to facilitate separation of the syn-
chronization concern. In this principle, contracts describe
the rights and responsibilities between operation consumers
and suppliers. In our approach, contracts describe the rights
and responsibilities between SIP applications and negotia-
tors.

Our language for specifying contracts can be viewed as gen-
eralizing the notion of critical regions [9, 6], one of the earlier
language mechanism proposed for declaratively specifying
the resource needs of threads. Entering a thread state is
similar to entering a critical region. In contrast to a criti-
cal region, however, our contract specifications can indicate
multiple resources that should be acquired “atomically” be-
fore entering a thread state. Moreover, a thread state may
have multiple entry and exit points, whereas a critical region
is a simple block statement.

An important class of more recent approaches use region in-
variants to declare synchronization constraints within des-
ignated regions of the code (e.g., constaining the numbers
of threads that can be executing concurrently). Region in-
variants may be declared separately from the code, as in
SyncGen [5], or given by annotating the code directly, as
in JAC [8]. Prior to compilation, these approaches generate
synchronization code from the region invariants and weave
it into a subject program. By contrast, our approach pre-
serves the structure of the original program and relegates
thread synchronization to an independent middleware.

The concurrency controllers design pattern provides yet an-
other approach to separating synchronization concerns [4].
Using this pattern, a programmer writes a concurrency con-
troller, which controls access to shared objects, much like our
negotiators. Instead of explicitly acquiring shared objects,
threads inform a centralized concurrency controller at run-
time of actions involving shared objects. The concurrency
controller dynamically triggers or postpones the action to
enforce mutual exclusion. Intuitively, these actions collec-
tively encapsulate a synchronization policy. While similar
in this respect to our negotiators, a concurrency controller
is a centralized mechanism associated with all resources that
need protection, not with threads.

To facilitate handling of the complexity caused by SIP and
other communication protocols, some recent research pro-
poses innovative programming frameworks and methodolo-
gies. In [12], a programmer writes applications on top of a
programming framework that provides programming sup-
port for manipulating interactions among communication
entities. The programmer declaratively specifies the inter-
action characteristics of these entities to automatically gen-
erate the framework. In [17], by contrast, a programmer de-
scribes a SIP application as a composition of finite state ma-
chines, called E-charts. Actions associated with the states
and transitions of E-charts express the message-processing
logic. A compiler translates the E-charts into servlet classes.
These frameworks and methodologies raise the level of ab-
straction for programming SIP applications. None, however,
deals with problems of synchronization in SIP containers.

7. CONCLUSION AND FUTURE WORK
Programming thread synchronization complicates the devel-
opment of reliable and efficient SIP applications deployed to
SIP servlet containers. We proposed a novel model that fa-
cilitates isolation of this complication. By automating the
obligation of thread synchronization in an independent mid-
dleware, our approach promotes correctness and flexibility.
In addition, the business code written by application pro-
grammers is also highly traceable to high level state models,
which aids comprehension, maintenance, and extension.

In our future work, we will integrate our approach with
state-machine based programming paradigms, such as State-
mate [7] and ECharts [17]. Once integrated, a programmer
could perform a model-checking process to verify whether
a generated state-model, in terms of the semantics intro-
duced in Section 5, agrees its synchronization contract or
whether the model under the contract could cause synchro-
nization failures. Additionally, the application translated
from this model could automatically include the code that
instantiates our approach, such as announcing transitions.

Our future work also involves promotion of our approach
to better serve realistic SIP applications. For instance, our
model could be generalized to support conditional resources
by permiting a resource designator to be associated with a
boolean expression that signifies the condition under which
a thread needs the corresponding resource. Conditional re-
sources would facilitate specification of contracts for appli-
cations that use wait and signal synchronization primitives
[9]. In addition, our framework could also be extended to
support vertical composition of synchronization contracts.
Currently, a programmer must explicitly declare the entire
set of resources that a thread (directly or indirectly) needs in
a global contract. For better modularity, a global contract
could be obtained by vertically composing local contracts
each specifying what other resources are needed to perform
operations that the resource provides.

Acknowledgements: Partial support was provided for this re-
search by NSF grant CCF 0702667, LogicBlox Inc., and AT&T
Research Laboratory.

The authors also thank G. Bond, H. Purdy, T. Smith, V. Sub-
ramonian, and P. Zave for indispensable explanations, feedback
and guidance.

8. REFERENCES
[1] C. Artho, K. Havelund, and A. Biere. High-level data races.

In Journal on Software Testing, Verification and Reliability
(STVR), 2003.

[2] R. Behrends. Designing and Implementing a Model of
Synchronization Contracts in Object-Oriented Languages.
PhD thesis, Michigan State University, East Lansing,
Michigan USA, Dec. 2003.

[3] R. Behrends and R. E. K. Stirewalt. The Universe Model:
An approach for improving the modularity and reliability of
concurrent programs. In Proc. of FSE’2000, 2000.

[4] A. Betin-Can and T. Bultan. Verifiable concurrent
programming using concurrency controllers. In Proc. of the
IEEE International Conference on Automated Software
Enginerring, 2004.

[5] X. Deng et al. Invariant-based specification, synthesis, and
verification of synchronization in concurrent programs. In
Proc. of the IEEE International Conference on Software

Engineering (ICSE’02), 2002.
[6] P. B. Hansen. Structured multiprogramming. Commun.

ACM, 15(7):574–578, 1972.
[7] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi,

R. Sherman, A. Shtull-Trauring, and M. Trakhtenbrot.
Statemate: a working environment for the development of
complex reactive systems. Software Engineering, IEEE
Transactions on, 16(4):403–414, Apr 1990.

[8] M. Haustein and K.-P. Löhr. Jac: declarative java
concurrency: Research articles. Concurr. Comput. : Pract.
Exper., 18(5):519–546, 2006.

[9] C. A. R. Hoare and R. H. Perrott Ed. Towards a theory of
parallel programming. London: Academic, 1972.

[10] Y. Huang, L. K. Dillon, and R. E. K. Stirewalt. On
mechanisms for deadlock avoidance in SIP servlet
containers. In H. Schulzrinne, R. State, and S. Niccolini,
editors, IPTComm, volume 5310 of Lecture Notes in
Computer Science, pages 196–216. Springer, 2008.

[11] Y. Huang, L. K. Dillon, and R. E. K. Stirewalt.
Prototyping synchronization policies for existing programs.
In The 17th IEEE International Conference on Program
Comprehension, ICPC 2009, 2009.

[12] W. Jouve, N. Palix, C. Consel, and P. Kadionik. A
SIP-based programming framework for advanced telephony
applications. pages 1–20, 2008.

[13] J. Larus and C. Kozyrakis. Transactional memory.
Commun. ACM, 51(7):80–88, 2008.

[14] E. A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[15] T. Mens and M. Wermelinger. Separation of concerns for
software evolution. Journal of Software Maintenance,
14(5):311–315, 2002.

[16] B. Meyer. Applying design by contract. IEEE Computer,
25(10), 1992.

[17] T. M. Smith and G. W. Bond. ECharts for SIP servlets: a
state-machine programming environment for voip
applications. In IPTComm ’07: Proceedings of the 1st
international conference on Principles, systems and
applications of IP telecommunications, pages 89–98, New
York, NY, USA, 2007. ACM.

[18] J. Wilkiewicz and M. Kulkarni. JSR 289: SIP servlet
specification v1.1.

