skip to main content
research-article

Wind flow modeling and simulation over the Giza Plateau cultural heritage site in Egypt

Published:30 November 2009Publication History
Skip Abstract Section

Abstract

In this article, the wind flow over one of the most important Egyptian historical heritage sites, the Giza Plateau, was investigated using the Computational Fluid Dynamics (CFD) state-of-the-art techniques. The present study addresses the influences of wind flow structure, as an important denudation factor, on the site and its famous monuments: the Pyramids and the Great Sphinx. Three-dimensional CFD simulations have been performed based on the Reynolds Averaged Navier-Stokes (RANS) equations for the cases of the northwest wind, at the average wind speed over the year, and the southwest windstorms. In addition, the wind-driven sand was considered for the same cases. Particular attention was paid to the Great Sphinx and the Pyramids to investigate their parts most vulnerable to the wind, which is contributing to the erosion of these monuments. The Great Sphinx was buried by sand and it was cleared several times throughout its history. In this study, we also address the less understood, yet important, burial mechanism of the Great Sphinx. The present work may give more insight to the effect of wind around the Giza Plateau when developing a global plan for conserving and protecting the site.

References

  1. Abdelaziz, O. A. and Khalil, E. E. 2004. CFD-controlled climate design of the archeological tombs of valley of kings. In Proceedings of the Conference on Sustaining Europe Cultural Heritage.Google ScholarGoogle Scholar
  2. AERAGRAM. 2004. Newsletter. Newslett. Ancient Egypt Res. Assoc. 7, 1.Google ScholarGoogle Scholar
  3. AERAGRAM. 2006. Newsletter. Newslett. Ancient Egypt Res. Assoc. 8, 1.Google ScholarGoogle Scholar
  4. Albero, S., Giavarini, C., Santarelli, M. L., and Vodret, A. 2004. CFD modeling for the conservation of the Gilded Vault Hall in the Domus Aurea. J. Cult. Herit. 5, 2, 197--203.Google ScholarGoogle ScholarCross RefCross Ref
  5. Balocco, C. 2007. Daily natural heat convection in a historical hall. J. Cult. Herit. 8, 4, 370--376.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bechmann, A., Sørensen, N. N., Johansen, J., Vinther, S., Nielsen, B. S., and Botha, P. 2007. Hybrid RANS/LES method for high Reynolds numbers, applied to atmospheric flow over complex terrain. The Science of Making Torque from Wind Conference. IOP Publishing, Journal of Physics Conference Series 75, 012054. {doi:10.1088/1742-6596/75/1/012054}.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bitsuamlak, G. T., Stathopoulos, T., and Bedard, C. 2004. Numerical evaluation of wind flow over complex terrain: Review. J. Aerospace Engin. 17, 4, 135--145. {doi:10.1061/(ASCE)0893-1321(2004)17:4(135)}.Google ScholarGoogle ScholarCross RefCross Ref
  8. Blocken, B. and Carmeliet, J. 2004. A review of wind-driven rain research in building science. J. Wind Engin. Indust. Aerodynam. 92, 13, 1079--1130. {doi:10.1016/j.jweia.2004.06.003}.Google ScholarGoogle ScholarCross RefCross Ref
  9. Blocken, B., Carmeliet, J., and Stathopoulos, T. 2007a. CFD evaluation of wind speed conditions in passages between parallel buildings -- Effect of wall-function roughness modifications for the atmospheric boundary layer flow. J. Wind Engin. Indust. Aerodynam. 95, 9-11, 941--962.Google ScholarGoogle ScholarCross RefCross Ref
  10. Blocken, B., Stathopoulos, T., and Carmeliet, J. 2007b. CFD simulation of the atmospheric boundary layer -- Wall function problems. J. Atmosph. Environ. 41, 2, 238--252.Google ScholarGoogle ScholarCross RefCross Ref
  11. Blocken, B. and Carmeliet, J. 2007. Validation of CFD simulations of wind-driven rain on low-rise building facade. J. Build. Environ. 42, 7, 2530--2548.Google ScholarGoogle ScholarCross RefCross Ref
  12. Chattot, J. J. 2002. Computational Aerodynamics and Fluid Dynamics: An Introduction. Springer.Google ScholarGoogle Scholar
  13. Cole, J. H. 1925. Determination of the Exact Size and Orientation of the Great Pyramid. Government press. http://www.theglobaleducationproject.org/egypt/studyguide/gpmath.php.Google ScholarGoogle Scholar
  14. Conservation of the Sphinx Project: An Environmental Strategy. 2008. Bibliotheca Alexandrina, Center for Documentation of Cultural and Natural Heritage, Strategic Approach to Egypt's Cultural Heritage Part IV. www.cultnat.org/download/Pdfs/part_4/14-Conservation%20of%20the%20Sphinx%20Project.pdf.Google ScholarGoogle Scholar
  15. Esmael, F. A. 1992. Management strategies and related methodologies in global conservation of the Sphinx. In Proceedings of the International Symposium on Great Sphinx (PSGS). 373--386.Google ScholarGoogle Scholar
  16. Frank, J., Hellsten, A., Schlünzen, H., and Carissimo, B. 2007. Best practice guideline for the CFD simulation of flows in the urban environment. Inthe COST Action 732. Quality Assurance and Improvement of Meteorological Models, University of Hamburg, Meteorological Institute, Center of Marine and Atmospheric Sciences.Google ScholarGoogle Scholar
  17. Franke, J., Hirsch, C., Jensen, A. G., Krüs, H. W., Schatzmann, M., Westbury, P. S., Miles, S. D., Wisse, J. A., and Wright, N. G. 2004. Recommendations on the use of CFD in wind engineering. In Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics. van Beeck Jpaj, Ed. Cost Action C14. Impact of wind and storm on city life built environment. von Karman Institute, Sint-Genesius-Rode, Belgium.Google ScholarGoogle Scholar
  18. Gambit. 2008. User's guide version 2.2.3. http://www.fluent.com/.Google ScholarGoogle Scholar
  19. Garcia, M. J. and Boulanger, P. 2006. Low altitude wind simulation over Mount Saint Helens using NASA SRTM digital terrain model. In Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06). 535--542. {doi: 10.1109/3DPVT.2006.92}. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Giza Archives Project. 2007. Project. http://www.gizapyramids.org/code/emuseum.asp?newpage=index.Google ScholarGoogle Scholar
  21. Guo, D., Evangelinos, C., and Patrikalakis, N. M. 2004. Flow feature extraction in oceanographic visualization. In Proceedings of the Computer Graphics International Conference (CGI'04). 162--173. {doi: 10.1109/CGI.2004.1309207}. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hargreaves, D. M., and Wright, N. G. 2007. On the use of the k-Ɛ model in commercial CFD software to model the neutral atmospheric boundary layer. J. Wind Engin. Indust. Aerodynam. 95, 5, 355--369. {doi:10.1016/j.jweia.2006.08.002}.Google ScholarGoogle ScholarCross RefCross Ref
  23. Hawass, Z. 1992. Histroy of the Sphinx conservations. In Proceedings of the International Symposium on the Great Sphinx (PSGS). 165--211.Google ScholarGoogle Scholar
  24. Hawass, Z. 2004a. Chronology of Ancient Egypt. http://www.zahihawass.com/.Google ScholarGoogle Scholar
  25. Hawass, Z. 2004b. The Secrets of the Sphinx: Restoration Past and Present. The American University in Cairo Press.Google ScholarGoogle Scholar
  26. Huber, A. H. 2006. A framework for fine-scale computational fluid dynamics air quality modeling and analysis. In Proceedings of the 5th Annual CMAS Conference.Google ScholarGoogle Scholar
  27. Hussein, A. S. and El-Shishiny, H. 2007. Modeling and simulation of low speed wind over the Great Sphinx. In Proceedings of the IEEE Symposium of Computers and Communications (ISCC'07). 1027--1034. {doi:10.1109/ISCC.2007.4381500}.Google ScholarGoogle Scholar
  28. Hussein, A. S. and El-Shishiny, H. 2009. Influences of wind flow over heritage sites: A case study of the wind environment over the Giza Plateau in Egypt. J. Environ. Model. Softw. 24, 3, 389--410. {doi:10.1016/j.envsoft.2008.08.002}. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jendrejack, R. M., de Pablo, J. J., and Graham, M. D. 2000. A multiscale approach to computational fluid dynamics. In Proceedings of the XIII International Congress on Rheology.Google ScholarGoogle Scholar
  30. Launder, B. E. and Spalding, D. B. 1974a. Mathematical Models of Turbulence. Academic Press.Google ScholarGoogle Scholar
  31. Launder, B. E. and Spalding, D. B. 1974b. The numerical computation of turbulence flows. Comput. Meth. Appl. Mechan. Engin. 3, 269--289. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Legon, J. A. 1979. The plan of the Giza pyramids. Archaeol. Rep. 10, 1. The Archaeology Society of Staten Island and the Staten Island Society, Archaeological Institute of America. http://goodfelloweb.com/giza/jlpamp.html/.Google ScholarGoogle Scholar
  33. Lehner, M. and James, A. 1985. Sphinx Map Project. http://www.aeraweb.org/sphinx_map.asp/.Google ScholarGoogle Scholar
  34. Liu, J. and Shyy, W. 1996. Assessment of grid interface treatments for multi-block incompressible viscous flow computation. J. Comput. Fluids 25, 8, 719--740. {doi:10.1016/S0045-7930(96)00022-9}.Google ScholarGoogle ScholarCross RefCross Ref
  35. MAYA. 2008. User's guide version 8.0. http://www.autodisk.com/.Google ScholarGoogle Scholar
  36. Meroney, R. N. 2004. Wind tunnel and numerical simulation of pollution dispersion: A hybrid approach. Working paper, Croucher Advanced Study Institute on Wind Tunnel Modeling, Hong Kong University of Science and Technology.Google ScholarGoogle Scholar
  37. Mortensen, N. G., Hansen, J. C., Badger, J., Jørgensen, B. H., Hasager, C. B., Paulsen, U. S., Hansen, O. F., Enevoldsen, K., Youssef, L. G., Said, U. S., Moussa, A. A., Mahmoud, M. A., Yousef, A. E., Awad, A. M., Ahmed, M. A., Sayed, M. A. M., Korany, M. H., and Tarad, M. A. 2006. Wind atlas for Egypt: Measurements, micro- and mesoscale modelling. In Proceedings of the European Wind Energy Conference and Exhibition.Google ScholarGoogle Scholar
  38. Moshfegh, B. and Nyiredy, R. 2004. Comparing RANS models for flow and thermal analysis of pin fin heat sinks. In Proceedings of 15th Australasian Fluid Mechanics Conference (AFMC00253).Google ScholarGoogle Scholar
  39. OpenDx. 2008. User's guide version 4.4.4. http://www.opendx.org/.Google ScholarGoogle Scholar
  40. OpenFoam. 2008. User's guide version 1.4.1. http://www.opencfd.co.uk/.Google ScholarGoogle Scholar
  41. Prospathopoulos, J. and Voutsinas, S. G. 2006. Implementation issues in 3D wind flow predictions over complex terrain. J. Solar Energy Engin. 128, 4, 539--553. {doi: 10.1115/1.2346702}.Google ScholarGoogle ScholarCross RefCross Ref
  42. Reichrath, S. and Davies, T. W. 2002. Using CFD to model the internal climate of greenhouses: Past, present and future. Agronomie 22, 1, 3--19.Google ScholarGoogle ScholarCross RefCross Ref
  43. Rohdin, P. and Moshfegh, B. 2007. Numerical predictions of indoor climate in large industrial premises. A comparison between different k-Ɛ models supported by field measurements. J. Build. Environ. 42, 11, 3872--3882. {doi:10.1016/j.buildenv.2006.11.005}.Google ScholarGoogle ScholarCross RefCross Ref
  44. Site Management of the Giza Plateau: Case Study. 2008. Bibliotheca Alexandrina, Center for Documentation of Cultural and Natural Heritage, Strategic Approach to Egypt's Cultural Heritage Part III. www.cultnat.org/download/Pdfs/part_3/8-Site%20Mgmt%20of%20Giza%20Plat.pdf.Google ScholarGoogle Scholar
  45. Stathopoulos, T. 1997. Computational wind engineering: Past achievements and future challenges. J. Wind Engin. Indust. Aerodynam. 67-68, 509--532. {doi:10.1016/S0167-6105(97)00097-4}.Google ScholarGoogle ScholarCross RefCross Ref
  46. Troi, A., Franzen, C., and Hausladen, G. 2006. Computational fluid dynamics can ensure high quality conservation interventions: A case study. In Proceedings of the Conference and Brokerage Event. The Construction Aspects of Built Heritage Protection.Google ScholarGoogle Scholar
  47. Wardjiman, C., Lee, A., Sheehan, M., and Rhodes, M. 2008. Behaviour of a curtain of particles falling through a horizontally-flowing gas stream. J. Powder Technol. To appear. {doi:10.1016/j.powtec.2008.04.002}.Google ScholarGoogle Scholar
  48. Zbigniew, S. 1989. Structure of the Atmospheric Boundary Layer. Prentice Hall, Englewood Cliffs, NJ.Google ScholarGoogle Scholar

Index Terms

  1. Wind flow modeling and simulation over the Giza Plateau cultural heritage site in Egypt

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image Journal on Computing and Cultural Heritage
            Journal on Computing and Cultural Heritage   Volume 2, Issue 2
            November 2009
            36 pages
            ISSN:1556-4673
            EISSN:1556-4711
            DOI:10.1145/1613672
            Issue’s Table of Contents

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 November 2009
            • Revised: 1 July 2009
            • Accepted: 1 July 2009
            • Received: 1 July 2008
            Published in jocch Volume 2, Issue 2

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader