skip to main content
research-article

A system for retargeting of streaming video

Published:01 December 2009Publication History
Skip Abstract Section

Abstract

We present a novel, integrated system for content-aware video retargeting. A simple and interactive framework combines key frame based constraint editing with numerous automatic algorithms for video analysis. This combination gives content producers high level control of the retargeting process. The central component of our framework is a non-uniform, pixel-accurate warp to the target resolution which considers automatic as well as interactively defined features. Automatic features comprise video saliency, edge preservation at the pixel resolution, and scene cut detection to enforce bilateral temporal coherence. Additional high level constraints can be added by the producer to guarantee a consistent scene composition across arbitrary output formats. For high quality video display we adopted a 2D version of EWA splatting eliminating aliasing artifacts known from previous work. Our method seamlessly integrates into postproduction and computes the reformatting in real-time. This allows us to retarget annotated video streams at a high quality to arbitary aspect ratios while retaining the intended cinematographic scene composition. For evaluation we conducted a user study which revealed a strong viewer preference for our method.

Skip Supplemental Material Section

Supplemental Material

References

  1. Avidan, S., and Shamir, A. 2007. Seam carving for content-aware image resizing. ACM Trans. Graph. 26, 3, 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Botsch, M., Hornung, A., Zwicker, M., and Kobbelt, L. 2005. High-quality surface splatting on today's GPUs. In Symposium on Point-Based Graphics, 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Briggs, W. L., Henson, V. E., and McCormick, S. F. 2000. A multigrid tutorial: second edition. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Buck, I. 2007. GPU computing with NVIDIA CUDA. In SIGGRAPH '07 Course Notes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, L.-Q., Xie, X., Fan, X., Ma, W.-Y., Zhang, H., and Zhou, H.-Q. 2003. A visual attention model for adapting images on small displays. Multimedia Syst. 9, 4, 353--364.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. David, H. A. 1963. The Method of Paired Comparisons. Charles Griffin&Company.Google ScholarGoogle Scholar
  7. Deselaers, T., Dreuw, P., and Ney, H. 2008. Pan, zoom, scan -- time-coherent, trained automatic video cropping. In CVPR.Google ScholarGoogle Scholar
  8. Ell, T. A., and Sangwine, S. J. 2007. Hypercomplex fourier transforms of color images. IEEE Transactions on Image Processing 16, 1, 22--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gal, R., Sorkine, O., and Cohen-Or, D. 2006. Feature-aware texturing. In Proceedings of Eurographics Symposium on Rendering, 297--303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gonzalez, R. C., and Woods, R. E. 2002. Digital Image Processing. Prentice Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Greene, N., and Heckbert, P. S. 1986. Creating raster omnimax images from multiple perspective views using the elliptical weighted average filter. IEEE Comput. Graph. Appl. 6, 6, 21--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Guo, C., Ma, Q., and Zhang, L. 2008. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. CVPR.Google ScholarGoogle Scholar
  13. Horn, B. K. P., and Schunck, B. G. 1981. Determining optical flow. Artificial Intelligence 17, 1--3, 185--203.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Itti, L., Koch, C., and Niebur, E. 1998. A model of saliency-based visual attention for rapid scene analysis. IEEE PAMI 20, 11, 1254--1259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Knoche, H., Papaleo, M., Sasse, M. A., and Vanelli-Coralli, A. 2007. The kindest cut: Enhancing the user experience of mobile tv through adequate zooming. In ACM Multimedia, 87--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kraevoy, V., Sheffer, A., Shamir, A., and Cohen-Or, D. 2008. Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 5, 111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Liu, F., and Gleicher, M. 2006. Video retargeting: automating pan and scan. In ACM Multimedia, 241--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Rubinstein, M., Shamir, A., and Avidan, S. 2008. Improved seam carving for video retargeting. ACM Trans. Graph. 27, 3, 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Rubinstein, M., Shamir, A., and Avidan, S. 2009. Multi-operator media retargeting. ACM Trans. Graph. 28, 3, 23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Schaefer, S., McPhail, T., and Warren, J. D. 2006. Image deformation using moving least squares. ACM Trans. Graph. 25, 3, 533--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Segal, M., and Akeley, K., 2006. The OpenGL Graphics System: A Specification (Version 2.1). http://www.opengl.org.Google ScholarGoogle Scholar
  22. Setlur, V., Takagi, S., Raskar, R., Gleicher, M., and Gooch, B. 2005. Automatic image retargeting. In MUM, 59--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Viola, P. A., and Jones, M. J. 2004. Robust real-time face detection. IJCV 57, 2, 137--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Wang, Y.-S., Tai, C.-L., Sorkine, O., and Lee, T.-Y. 2008. Optimized scale-and-stretch for image resizing. ACM Trans. Graph. 27, 5, 118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wang, Y.-S., Fu, H., Sorkine, O., Lee, T.-Y., and Seidel, H.-P. 2009. Motion-aware temporal coherence for video resizing. ACM Trans. Graph. 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wolf, L., Guttmann, M., and Cohen-Or, D. 2007. Non-homogeneous content-driven video-retargeting. In ICCV, 1--6.Google ScholarGoogle Scholar
  27. Zabih, R., Miller, J., and Mai, K. 1995. A feature-based algorithm for detecting and classifying scene breaks. In ACM Multimedia, 189--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zhang, Y.-F., Hu, S.-M., and Martin, R. R. 2008. Shrinkability maps for content-aware video resizing. In Pacific Graphics.Google ScholarGoogle Scholar
  29. Zwicker, M., Pfister, H., van Baar, J., and Gross, M. H. 2002. Ewa splatting. IEEE Trans. Vis. Comput. Graph. 8, 3, 223--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Zwicker, M., Räsänen, J., Botsch, M., Dachsbacher, C., and Pauly, M. 2004. Perspective accurate splatting. In Graphics Interface, 247--254. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A system for retargeting of streaming video

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader