skip to main content
10.1145/1639714.1639720acmconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
research-article

Pairwise preference regression for cold-start recommendation

Authors Info & Claims
Published:23 October 2009Publication History

ABSTRACT

Recommender systems are widely used in online e-commerce applications to improve user engagement and then to increase revenue. A key challenge for recommender systems is providing high quality recommendation to users in ``cold-start" situations. We consider three types of cold-start problems: 1) recommendation on existing items for new users; 2) recommendation on new items for existing users; 3) recommendation on new items for new users. We propose predictive feature-based regression models that leverage all available information of users and items, such as user demographic information and item content features, to tackle cold-start problems. The resulting algorithms scale efficiently as a linear function of the number of observations. We verify the usefulness of our approach in three cold-start settings on the MovieLens and EachMovie datasets, by comparing with five alternatives including random, most popular, segmented most popular, and two variations of Vibes affinity algorithm widely used at Yahoo! for recommendation.

References

  1. D. Agarwal, B. Chen, P. Elango, N. Motgi, S. Park, R. Ramakrishnan, S. Roy, and J. Zachariah. Online models for content optimization. In Advances in Neural Information Processing Systems 21, 2009.Google ScholarGoogle Scholar
  2. D. Agarwal and B.-C. Chen. Regression based latent factor models. In KDD, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. D. Agarwal and S. Merugu. Predictive discrete latent factor models for large scale dyadic data. In KDD, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. C. Aggarwal, J. L. Wolf, K.-L. Wu, and P. S. Yu. Horting hatches an egg: a new graph-theoretic approach to collaborative filtering. In ACM KDD, pages 201--212, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Balabanovic and Y. Shoham. Fab: content-based, collaborative recommendation. Communications of the ACM, 40(3):66--72, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Basilico and T. Hofmann. A joint framework for collaborative and content filtering. In ACM SIGIR, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as classification: Using social and content-based information in recommendation. In AAAI/IAAI, pages 714--720, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R. Bell, Y. Koren, and C. Volinsky. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In KDD, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. Billsus and M. J. Pazzani. Learning collaborative information filters. In ICML, pages 46--54, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In UAI, pages 43--52, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. Chu and S.-T. Park. Personalized recommendation on dynamic contents using probabilistic bilinear models. In Proceedings of the 18th international conference on World wide web, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin. Combining content-based and collaborative filters in an online newspaper. In ACM SIGIR Workshop on Recommender Systems, 1999.Google ScholarGoogle Scholar
  13. D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix factorization. In ICML, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2):133--151, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. M. Sarwar, J. L. Herlocker, and J. Riedl. Combining collaborative filtering with personal agents for better recommendations. In AAAI/IAAI, pages 439--446, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. A. Harshman. Parafac2: Mathematical and technical notes. UCLA working papers in phonetics, 22:30--44, 1972.Google ScholarGoogle Scholar
  17. R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning for ordinal regression. In Proc. of the Ninth International Conference on Artificial Neural Networks, pages 97--102, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In ACM SIGIR, pages 230--237, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. T. Hofmann and J. Puzicha. Latent class models for collaborative filtering. In IJCAI, pages 688--693, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Melville, R. Mooney, and R. Nagarajan. Content-boosted collaborative filtering. In AAAI, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. B. Nag. Vibes: A platform-centric approach to building recommender systems. IEEE Data Eng. Bull., 31(2):23--31, 2008.Google ScholarGoogle Scholar
  22. L. Omberg, G. H. Golub, and O. Alter. A tensor higher-order singular value decomposition for integrative analysis of dna microarray data from different studies. PNAS, 104(47):18371--18376, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  23. T. Pahikkala, E. Tsivtsivadze, A. Airola, T. Boberg, and T. Salakoski. Learning to rank with pairwise regularized least-squares. In SIGIR 2007 Workshop on Learning to Rank for Information Retrieval, pages 27--33, 2007.Google ScholarGoogle Scholar
  24. S.-T. Park, D. M. Pennock, O. Madani, N. Good, and D. DeCoste. Naive filterbots for robust cold-start recommendations. In KDD, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. J. Pazzani. A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5--6):393--408, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis: A hybrid memory- and model-based approach. In UAI, pages 473--480, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender systems -- a case study. In ACM WebKDD Workshop, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  28. B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Reidl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285--295, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for cold-start recommendations. In ACM SIGIR, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. U. Shardanand and P. Maes. Social information filtering: Algorithms for automating "word of mouth". In CHI, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. H. Stern, R. Herbrich, and T. Graepel. Matchbox: large scale online bayesian recommendations. In Proceedings of the 18th international conference on World wide web, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: Dynamic tensor analysis. In Proc. of The Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279--311, 1966.Google ScholarGoogle ScholarCross RefCross Ref
  34. H. Wang and N. Ahuja. Effcient rank-r approximation of tensors: A new approach to compact representation of image ensembles and recognition. In Proc. of the IEEE International Conference on Computer Vision and Pattern Recognition, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and Z. Chen. Scalable collaborative filtering using cluster-based smoothing. In SIGIR, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. C. Ziegler, G. Lausen, and L. Schmidt. Taxonomy-driven computation of product recommendations. In CIKM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Pairwise preference regression for cold-start recommendation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            RecSys '09: Proceedings of the third ACM conference on Recommender systems
            October 2009
            442 pages
            ISBN:9781605584355
            DOI:10.1145/1639714

            Copyright © 2009 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 23 October 2009

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate254of1,295submissions,20%

            Upcoming Conference

            RecSys '24
            18th ACM Conference on Recommender Systems
            October 14 - 18, 2024
            Bari , Italy

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader