skip to main content
10.1145/1653771.1653809acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Design and evaluation of trajectory join algorithms

Published: 04 November 2009 Publication History

Abstract

Both spatial and temporal join algorithms have been widely studied in the past, but there is very little work on the more complex problem of trajectory joins, which have many uses in emerging location-based applications. In this paper, we present a general framework, called JiST, that introduces a broad class of trajectory join operations, including trajectory distance join and trajectory k Nearest Neighbors join. Within the JiST framework, we present a set of algorithms to evaluate the trajectory join operations. Finally we present results from detailed experiments that demonstrate the efficiency and scalability of the JiST join algorithms. To the best of our knowledge, JiST is the first comprehensive framework for complex trajectory join operations and lays the foundation for building a complex querying platform for emerging trajectory-based applications.

References

[1]
P. Agarwal, L. Arge, and J. Erickson. Indexing Moving Points. In PODS, pages 175--186, 2000.
[2]
P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras. Efficient Trajectory Joins Using Symbolic Representations. In MDM, pages 86--93. ACM, 2005.
[3]
C. Böhm and F. Krebs. High Performance Data Mining Using the Nearest Neighbor Join. In IEEE International Conference on Data Mining (ICDM), 2002.
[4]
C. Böhm and F. Krebs. The k-Nearest Neighbor Join: Turbo Charging the KDD Process. KAIS, 6(6), 2004.
[5]
T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient Processing of Spatial Joins Using R-Trees. In SIGMOD, pages 237--246, 1993.
[6]
M. Carey and et al. Shoring Up Persistent Applications. In SIGMOD, pages 383--394, 1994.
[7]
Y. Chen and J. M. Patel. Efficient Evaluation of All-Nearest-Neighbor Queries. In ICDE, pages 1056--1065. IEEE, 2007.
[8]
K. L. Clarkson. Fast Algorithms for the All Nearest Neighbors Problem. In 24th Ann. IEEE Sympos. on the Found. Comput. Sci., pages 226--232, 1983.
[9]
A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest Pair Queries in Spatial Databases. In SIGMOD, pages 189--200, 2000.
[10]
A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Algorithms for Processing K-Closest-Pair Queries in Spatial Databases. TKDE, 49(1):67--104, 2004.
[11]
E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis. Algorithms for Nearest Neighbor Search on Moving Object Trajectories. GeoInformatica, 11(2):159--193, 2007.
[12]
D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Join Operations in Temporal Databases. VLDB J, 14(1):2--29, 2005.
[13]
M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tsotras. Complex spatio-temporal pattern queries. In VLDB, pages 877--888, 2005.
[14]
G. R. Hjaltason and H. Samet. Incremental Distance Join Algorithms for Spatial Databases. In SIGMOD, pages 237--248, 1998.
[15]
E. G. Hoel and H. Samet. Benchmarking Spatial Join Operations with Spatial Output. In VLDB, pages 606--618, 1995.
[16]
Y.-W. Huang, N. Jing, and E. A. Rundensteiner. Spatial Joins Using R-trees: Breadth-First Traversal with Global Optimizations. In VLDB, pages 396--405, 1997.
[17]
G. S. Iwerks, H. Samet, and K. Smith. Maintenance of Spatial Semijoin Queries on Moving Points. In VLDB, pages 828--839, 2004.
[18]
C. S. Jensen, D. Lin, and B. C. Ooi. Query and Update Efficient B+-Tree Based Indexing of Moving Objects. In VLDB, pages 768--779, 2004.
[19]
S.-H. Jeong, N. W. Paton, A. A. A. Fernandes, and T. Griffitths. An Experimental Performance Evaluation of Spatio-Temporal Join Strategies. TGIS, 9(2), 2004.
[20]
T. Kahveci and A. K. Singh. Variable length queries for time series data. In ICDE, pages 273--282, 2001.
[21]
E. J. Keogh, T. Palpanas, V. B. Zordan, D. Gunopulos, and M. Cardle. Indexing large human-motion databases. In VLDB, pages 780--791, 2004.
[22]
G. Kollios, D. Gunopulos, and V. Tsotras. On Indexing Mobile Objects. In PODS, pages 261--272, 1999.
[23]
J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect framework. In ICDE, pages 140--149, 2008.
[24]
J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group framework. In SIGMOD Conference, pages 593--604, 2007.
[25]
D. Lin, C. S. Jensen, B. C. Ooi, and S. Saltenis. Efficient Indexing of the Historical, Present, and Future Positions of Moving Objects. In MDM, pages 59--66. ACM, 2005.
[26]
M.-L. Lo and C. V. Ravishankar. Spatial Hash-Joins. In SIGMOD, pages 247--258, 1996.
[27]
Y.-S. Moon, K.-Y. Whang, and W.-K. Loh. Duality-based subsequence matching in time-series databases. In ICDE, pages 263--272, 2001.
[28]
D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group Nearest Neighbor Queries. In ICDE, pages 301--312, 2004.
[29]
J. M. Patel, Y. Chen, and V. P. Chakka. STRIPES: An Efficient Index for Predicted Trajectories. In SIGMOD, pages 635--646. ACM Press, 2004.
[30]
J. M. Patel and D. J. DeWitt. Partition Based Spatial-merge Join. In SIGMOD, pages 259--270, 1996.
[31]
Satyendra P. Rana and Farshad Fotouhi. Efficient Processing of Time-Joins in Temporal Data Bases. In DASFAA, volume 4 of Advanced Database Research and Development Series, pages 427--432. World Scientific, 1993.
[32]
H. Shin, B. Moon, and S. Lee. Adaptive Multi-Stage Distance Join Processing. In SIGMOD, pages 343--354, 2000.
[33]
D. Son and R. Elmasri. Efficient Temporal Join Processing Using Time Index. In Proceedings: Eighth International Conference on Scientific and Statistical Database Systems, pages 252--261. IEEE Computer Society Press, 1996.
[34]
M. D. Soo, R. T. Snodgrass, and C. S. Jensen. Efficient Evaluation of the Valid-Time Natural Join. In ICDE, pages 282--292, 1994.
[35]
J. Sun, Y. Tao, D. Papadias, and G. Kollios. Spatio-temporal Join Selectivity. Information Systems, 2006.
[36]
Y. Tao and D. Papadias. MV3R-Tree: A Spatio-Temporal Access Method for Timestamp and Interval Queries. In VLDB Journal, pages 431--440, 2001.
[37]
Y. Tao, D. Papadias, and J. Sun. The TPR*-Tree: An Optimized Spatio-Temporal Access Method for Predictive Queries. In VLDB, pages 790--801, 2003.
[38]
Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento. On the Generation of Spatiotemporal Datasets. Lecture Notes in Computer Science, 1651:147--164, 1999.
[39]
Y.-R. Wang, S.-J. Horng, and C.-H. Wu. Efficient Algorithms for the All Nearest Neighbor and Closest Pair Problems on the Linear Array with a Reconfigurable Pipelined Bus System. PDIS, 16(3), 2005.
[40]
C. Xia, H. Lu, B. C. Ooi, and J. Hu. GORDER: An Efficient Method for KNN Join Processing. In VLDB, pages 756--767, 2004.
[41]
D. Zhang, V. J. Tsotras, and B. Seeger. Efficient Temporal Join Processing Using Indices. In ICDE, page 103. IEEE Computer Society, 2002.
[42]
J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao. All-Nearest-Neighbors Queries in Spatial Databases. In SSDBM, pages 297--306, 2004.
[43]
M. Zhu, D. Papadias, J. Zhang, and D. L. Lee. Top-k Spatial Joins. TKDE, 17(4):567--579, 2005.
[44]
T. Zurek. Optimization of Partitioned Temporal Joins. PhD thesis, University of Edinburgh, 1997.

Cited By

View all
  • (2025)Efficient Parallel Processing of Semantic Trajectory Similarity JoinsIEEE Internet of Things Journal10.1109/JIOT.2024.342767612:4(3534-3548)Online publication date: 15-Feb-2025
  • (2024)Physics-Based Abnormal Trajectory Gap DetectionACM Transactions on Intelligent Systems and Technology10.1145/367323515:5(1-31)Online publication date: 15-Jun-2024
  • (2024)Retrieving Similar Trajectories from Cellular Data of Multiple Carriers at City ScaleACM Transactions on Sensor Networks10.1145/361324520:2(1-28)Online publication date: 16-Feb-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GIS '09: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
November 2009
575 pages
ISBN:9781605586496
DOI:10.1145/1653771
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 November 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. distance join
  2. kNN join
  3. spatial join
  4. spatio-temporal databases
  5. spatio-temporal join
  6. trajectory join

Qualifiers

  • Research-article

Funding Sources

Conference

GIS '09
Sponsor:

Acceptance Rates

Overall Acceptance Rate 257 of 1,238 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)1
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Efficient Parallel Processing of Semantic Trajectory Similarity JoinsIEEE Internet of Things Journal10.1109/JIOT.2024.342767612:4(3534-3548)Online publication date: 15-Feb-2025
  • (2024)Physics-Based Abnormal Trajectory Gap DetectionACM Transactions on Intelligent Systems and Technology10.1145/367323515:5(1-31)Online publication date: 15-Jun-2024
  • (2024)Retrieving Similar Trajectories from Cellular Data of Multiple Carriers at City ScaleACM Transactions on Sensor Networks10.1145/361324520:2(1-28)Online publication date: 16-Feb-2024
  • (2024)Collectively Simplifying Trajectories in a Database: A Query Accuracy Driven Approach2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00334(4383-4395)Online publication date: 13-May-2024
  • (2024)FUDJ: Flexible User-Defined Distributed Joins2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00320(4194-4207)Online publication date: 13-May-2024
  • (2022)Analyzing Trajectory Gaps to Find Possible Rendezvous RegionACM Transactions on Intelligent Systems and Technology10.1145/346797713:3(1-23)Online publication date: 18-Jan-2022
  • (2021)Distributed Spatiotemporal Distance Join for Trajectory Data2021 IEEE 17th International Conference on eScience (eScience)10.1109/eScience51609.2021.00021(108-117)Online publication date: Sep-2021
  • (2021)i4sea: a big data platform for sea area monitoring and analysis of fishing vessels activityGeo-spatial Information Science10.1080/10095020.2021.197105525:2(132-154)Online publication date: 19-Oct-2021
  • (2021)Network-based Trajectory Search over Time IntervalsBig Data Research10.1016/j.bdr.2021.100221(100221)Online publication date: Feb-2021
  • (2020)Parallel Semantic Trajectory Similarity Join2020 IEEE 36th International Conference on Data Engineering (ICDE)10.1109/ICDE48307.2020.00091(997-1008)Online publication date: Apr-2020
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media