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Abstract
We report on our experience implementing a lightweight, fully ver-
ified relational database management system (RDBMS). The func-
tional specification of RDBMS behavior, RDBMS implementation,
and proof that the implementation meets the specification are all
written and verified in Coq. Our contributions include: (1) a com-
plete specification of the relational algebra in Coq; (2) an efficient
realization of that model (B+ trees) implemented with the Ynot ex-
tension to Coq; and (3) a set of simple query optimizations proven
to respect both semantics and run-time cost. In addition to describ-
ing the design and implementation of these artifacts, we highlight
the challenges we encountered formalizing them, including the
choice of representation for finite relations of typed tuples and the
challenges of reasoning about data structures with complex shar-
ing. Our experience shows that though many challenges remain,
building fully-verified systems software in Coq is within reach.

Categories and Subject Descriptors F.3.1 [Logics and mean-
ings of programs]: Mechanical verification; D.2.4 [Software En-
gineering]: Correctness proofs, formal methods, reliability; H.2.4
[Database Management]: Relational databases, query processing

General Terms Languages, Verification

Keywords relational model, dependent types, separation logic,
B+ tree

1. Motivation
Relational database management systems (RDBMSs) have become
ubiquitous components of modern application software. For exam-
ple, SQLite, a lightweight RDBMS, ships as a component of Fire-
fox, Skype, SymbianOS, and McAfee Antivirus, among others. In
many of these applications, the RDBMS is used to store data whose
integrity and confidentiality must be strictly maintained (e.g., fi-
nancial records or security credentials). In an ideal world, an ap-
plication developer would be provided with a high-level specifica-
tion for the behavior of the data manager, suitable for formal (i.e.,
mechanical) reasoning about application-level security and correct-
ness properties. Furthermore, the implementation of the data man-
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ager would be proven correct with respect to this specification to
ensure that a bug cannot lead to accidental corruption or disclosure.
It is for these reasons that we see verified RDBMSs as a compelling
challenge to the programming languages and software verification
communities that moves beyond the now successful domains of
verified compilers and theorem provers.

As a step towards this goal, we have constructed a verified,
lightweight, in-memory RDBMS using the Coq proof assistant [2].
Currently, our RDBMS supports queries, written in a stylized
subset of SQL, over an in-memory relational store that can be
[de]serialized to disk. As such, it provides much of the function-
ality needed for single-threaded client applications, but lacks the
“ACID” properties (Atomicity, Consistency, Isolation, Durability)
necessary in a concurrent, persistent storage system. The relational
store is modeled using finite sets of typed tuples, and query seman-
tics are expressed in terms of this model. Before execution, a query
is transformed by a simple and provably semantics-preserving opti-
mizer. The resulting optimized query is then mapped to a sequence
of low-level operations over B+ trees. We implement B+ trees using
Ynot [15], an axiomatic extension to Coq that provides facilities for
writing and reasoning about imperative, pointer-based code.

The design and implementation are highly modularized to sup-
port code (and proof) re-use, and to enable alternative implemen-
tations. For example, the query execution engine works in terms of
a generic finite map interface that can be realized with hash tables
or other data structures besides B+ trees. As another example, the
query optimizer can be extended with semantic optimizations that
exploit a priori knowledge about relations, as long as appropriate
(semantic) certificates of that knowledge can be presented to it.

The goal of this paper is to describe our verified, lightweight
RDBMS and discuss the challenges we faced using a proof devel-
opment environment such as Coq to build the system. Foremost
among these were:

• Choosing an appropriate encoding of the relational model. In-
formally, a relation is simply a finite set of tuples over some
basic value types. In Coq, there are many ways to represent
such relations, each with different tradeoffs. For example, pre-
vious work encoding relational algebra in Agda suggests that
schemas should be represented as functions from a finite set of
column names to basic types [9], but in practice, we found that
a concrete encoding using a list of type names yields a more
workable representation.

• Another choice was how to represent finite sets. Finite sets are
a common abstraction and Coq conveniently provides them as
a standard library. Unfortunately, the library is currently coded
as a compile-time, ML-style functor parameterized by a fixed
element type. This is too restrictive for our RDBMS, which
must determine the type parameter at run-time.

• Finally, we found formalizing correctness proofs for compli-
cated, pointer-based data structures particularly difficult despite
previous work in this area [3, 23]. B+ trees, which are gener-



alized binary search trees with leaves connected by a linked-
list “skirt” for rapid traversal, are often used to index data and
are crucial for query execution performance. However, they are
tricky to get right. BerkeleyDB, a high-performance embedded
RDBMS that has hosted Google’s accounts information [20],
experiences around two dozen B+ tree-related bugs per version,
according to its change-log.
The Ynot extension to Coq was designed to support writing
and proving correct this kind of pointer-based code, using a
variant of separation logic [18, 22]. Separation logic makes it
particularly easy to reason about data structures with “local”
pointer structure, such as trees. However, in the case of B+ trees,
the pointer structure does not directly fit this pattern, which
leads to complicated invariants and proofs of correctness.

Industrial strength RDBMSs include features which we have not
yet implemented, such as indices and sophisticated query planning,
as well as features which we can not yet reason about using our sys-
tem. Nevertheless, the above challenges must be addressed before
more sophisticated implementations can be verified.

Outline
This paper is structured as follows. In the next section we give an
overview of what our RDBMS does, what we verify, and how the
RDBMS is implemented. The sections after that present the speci-
fication and implementation in detail. We then discuss what devel-
opment was actually like, give the lessons we learned, and provide
measurements about verification overhead. We conclude with com-
parisons to related formalizations of the relational algebra in Agda.
The source code is available at http://ynot.cs.harvard.edu.
Note that for purposes of exposition we will sometimes omit infer-
able arguments and take other notational liberties.

2. Overview
We have constructed a simple, fully verified, in-memory RDBMS.
A command line interface lets users create tables, load tuples into
a table, save/restore a table to/from disk, and query the tables using
a subset of SQL. The main verification task is showing that the
RDBMS correctly executes queries with respect to a denotational
semantics of SQL and relations. Execution includes parsing SQL
concrete syntax into abstract syntax trees (ASTs), transforming the
ASTs into relational algebra expressions, performing source-to-
source optimizations on the relational algebra, and then interpreting
queries as series of operations over B+ trees, as shown in Figure 1.
The RDBMS has five main components, each of which has been
implemented in Coq:

• The relational algebra model (Section 3) defines schemas, rela-
tions, and declarative specifications of query operations.

• The SQL compiler (Section 4) includes the parser, definitions
for SQL abstract syntax, a denotational specification for SQL
in terms of the model, and semantics-preserving SQL optimiza-
tions. We also formulated a run-time cost model and proved that
several transformations are not cost-increasing.

• The SQL execution engine (Section 5) interprets the optimized
SQL expression as a series of operations over imperative finite
maps. Correctness is established using Hoare-style reasoning
relating imperative finite maps to the relations they represent.

• The B+ tree implementation (Section 6) provides finite map op-
erations for insertion and lookup of key-value pairs, and itera-
tion (amongst others). These imperative operations are coded
with the Ynot extension to Coq and verified using a variant of
separation logic.

Optimization

Execution

Relational Algebra Expression

Planning

Engine Interface

Finite Set of Tuples

Respects 
Cost Model

Denotational 
Semantics

Equal

Relational Algebra Expression

Storage

Parsing

Query Input by user

B+ tree,
Finite map
interface

Figure 1. RDBMS Architecture.

• The storage interface (Section 7) is responsible for [de]serializing
relations to disk and establishing integrity constraints. The stor-
age manager includes a proof that deserializing the serialized
form of a relation R results in R, under the assumption that
disk operations do not fail.

The Coq extraction facility allows us to run our code by trans-
lating it to OCaml. During this process, non-computational content
used only in specifications, such as the relational model, is erased.
The Ynot library provides imperative OCaml definitions for Coq
axioms (e.g., Ynot references become OCaml references manipu-
lated with standard effectful OCaml read/write operations).

3. The Model
The relational algebra has a standard definition in terms of set
theory, so a large portion of our RDBMS specification deals with
realizing both sets and the relational algebra in Coq. We begin with
an informal overview of relational concepts and then discuss how
each of these is realized within Coq.

As is standard, we model a database using relations. A relation
can be represented as a finite set of tuples over a list of primitive
types. It is helpful to think of a relation as a table (with no duplicate
rows) where the rows represent entries and the columns represent
attributes of an entry. The list of primitive types that describes the
columns is known as the schema for the relation.

Tuples in a relation are indexed by a set of attribute names.
To simplify our implementation, we use the position (column) of
an element as the attribute name, but it would be easy to support
another index set by maintaining a mapping from names to offsets.

New relations are constructed using a basis of operations:



• Selection. Given a predicate P , selection returns the subset of
the relation’s tuples that satisfy P .

• Projection. Restricts each tuple in a relation to a subset of the
relation’s columns.

• Permutation. Permutes a relation’s columns.
• Union. Returns the set-theoretic union of two relations.
• Difference. The difference of relation A and B returns the

result of removing every tuple in B from A.
• Cartesian Product. The cartesian product of relation A with

n columns and relation B with m columns consists of every
(n + m)-tuple that can be formed by concatenating a tuple in
A with a tuple in B.

This basis is relationally complete, and equal in expressive
power to other relational formalisms, like relational calculus [1].
However, the choice of basis is somewhat arbitrary; for example,
we could have chosen to use join and recovered cartesian product
as a degenerate case.

The ordered, nameless schema representation is a design deci-
sion that we believe simplified reasoning and implementation. To
accommodate an unordered, named representation would require a
renaming operation instead of permutation.

3.1 Schema
In our model, the schema for a relation is defined as follows:1

Parameter tname : Set.
Parameter tnameDenote : tname -> Set.

Definition Schema : Set := list tname.

Thus, a schema is represented as a list of type names, and type
names can be mapped to Coq types by a denotation function. The
definition for type names and the denotation function are parame-
ters to the system so that users can easily add new constructors to
the set of schema types. For example, we might define tname as
the inductive definition:

Inductive tname : Set :=
| Nat : tname | Bool : tname | Str : tname
| Option : tname -> tname.

and define the denotation function as:

Fixpoint tnameDenote (t:tname) : Set :=
match t with
| Nat => nat
| Bool => bool
| Str => string
| Option t’ => option (tnameDenote t’)

end.

where nat, bool, etc. are the corresponding Coq types. The values
that make up tuples are inhabitants of the denoted Coq types. For
example,

"Abc" : tnameDenote Str and 17 : tnameDenote Nat

We need to be able to compare schemas for equality (e.g.,
to check that an optimization is admissible). Equality between
arbitrary Coq types is undecidable, so we require decidable equality
on type names as another parameter to the system:

Parameter tname_dec_eq :
forall (n1 n2: tname), {n1=n2} + {n1<>n2}.

1 Here Set refers to Coq’s type universe, not sets in the sense of relations.

Additionally, we require that for any type name, the Coq type T
that it denotes satisfies the following properties:

1. T must be a decidable setoid; that is, come equipped with a
decidable equivalence relation.

2. T must be a decidable total order; that is, come equipped with
a decidable total ordering compatible with the setoid.

3. T must be serializable; that is, come equipped with a pair of
functions ser : T → string and deser : string →
option T such that ∀x:T, deser(serx) = Some x.

Like decidable equality for type names, these properties on denota-
tions are given as parameters to the system. Property (1) allows for
equivalence relations on column types that are weaker than syntac-
tic (Leibniz) equality. For instance, we can treat strings in a case-
insensitive way. Property (2) is required because of the way we
build sets of tuples, and property (3) is used for persistence.

3.2 Tuples
As we have seen, each column in a relation has a type, and a tuple
associates a value of the appropriate type to each column. That is,
a tuple is a heterogeneously-typed list. The type of a tuple is given
by a recursive, type-level function (where :: is list cons) :

Fixpoint Tuple (A: Schema) : Set :=
match A with
| nil => unit
| n :: t => tnameDenote n * Tuple t
end.

Tuples are essentially iterated pairs of values, terminated by a unit
(the single inhabitant of unit is written tt). For example,

Definition aSchema : Schema :=
Str :: Nat :: Bool :: nil.

Definition aTuple : Tuple aSchema :=
("Hello world", (17, (true, tt))).

To express the relational operations we need to define several
tuple manipulation functions. For example, to perform product we
need an operation with the following type to fuse tuples:

fuseTuples (I J: Schema)(x: Tuple I)(y: Tuple J) :
Tuple (I ++ J).

The type of this function ensures that the schema of the resulting
fused tuple is the concatenation of the input schemas. We also
use the richness of Coq’s type system to help simplify reasoning
about error cases. For instance, to project out the type name of a
particular column n from a schema I , we need to provide a proof
that witnesses that n is less than the length of I:

colType (I:Schema) (n:nat) (pf:n<length I) : tname.

The operation to project a single column from a tuple uses
colType in its type:

projTupleCol (I: Schema) (n: nat) (pf: n < length I)
(t: Tuple I) : tnameDenote (colType I n pf).

We implement multi-column projection by iterating colType and
projTupleCol to obtain colTypes and projTupleCols.

3.3 Relations as Finite Sets
The next choice we consider is how to represent finite sets in Coq.
Coq provides the “FSets” library for this, but we could not use it
directly. The library is coded as an ML-style functor which requires
the static determination of the carrier. Our RDBMS must compute
this type from a schema at run-time, because it does not know table



schemas until the user actually loads data at run-time. Rather than
try to encode such behavior using modules, we modified the FSet
library to be first-class using Coq’s type class mechanism.

Type classes are a recent addition to Coq and behave similarly
to their Haskell counterparts [27]. They allow the user to overload
a set of operations across a class of types. We have a class of types
FSetInterface that is parameterized by a type elt of elements
and a total ordering E over elt that can be used as specifications
of finite sets. Here Prop indicates Coq’s type of computationally
irrelevant propositions:

Class FSetInterface (elt: Set) (E: OrderedType elt)
: Type :=

{ Fset: Set; (* the abstract type of finite sets *)

(* operations *)
empty : Fset;
union : Fset -> Fset -> Fset;
is_empty : Fset -> bool;
...
(* predicates *)
In : elt -> Fset -> Prop;
Equal := fun s s’ => forall a : elt,
In a s <-> In a s’;

...
(* axioms *)
union_1 : forall s s’ x, In x (union s s’) ->
In x s \/ In x s’;

union_2 : forall s s’ x, In x s ->
In x (union s s’);

...
}.

In addition to specifying the operations that define the class, we
specify a set of axioms that allow us to reason about the operations.
We must also show that this specification is realizable, which we
do by providing a simple implementation using lists.

Given that we require the element types to be ordered, an al-
ternative implementation of a finite set would be as a sorted list
with a proof that the list contains no duplicates. The advantage of
this concrete representation, over our axiomatic interface, is that
we could: (1) derive the axioms directly from the representation;
and (2) rewrite directly using Leibniz equality. The disadvantage,
of course, is that the interface would not be as re-usable in other
application contexts where we desire a weaker notion of equality.

In general, we have found that the richness of Coq, including
support for ML-style modules, dependent records, and type classes,
coupled with abstraction and equality issues yields a set of design
tradeoffs that are difficult to evaluate without exploring (by coding)
many alternatives. One set of tradeoffs is present in any RDBMS
formalization; for instance, whether to name columns or use col-
umn numbers. Another set of tradeoffs arises only because certain
forms of reasoning appear to be more effective in Coq and would
not appear in a paper and pencil formalization; for instance, the
choice of axiomatic sets instead of sets as concrete lists. Both sets
of tradeoffs are equally important for verified software because ev-
ery detail must be checked. Unfortunately, it can often take signifi-
cant time to fully understand the Coq-engineering consequences of
a seemingly inconsequential design choice; for instance, whether
to represent schema as lists of type names or as functions from col-
umn numbers to type names. At present it is unclear how best to
explore the design space.

3.4 Relational Algebra in Coq
We define the relational operations over finite sets of schema-
typed tuples (relations). Building relations requires defining a total

ordering over tuples and interacting with the type class mechanism,
but, for purposes of exposition, we essentially have that:

Definition Relation (I:Schema) :=
FSetInterface (Tuple I).

Union, difference, and selection are implemented in terms of the
FSetInterface union, difference, and filter functions. Pro-
jection and product are defined using the generic fold function
provided by the FSetInterface.

Selection allows any Coq predicate that respects the setoid
equality of the schema column types to be used, but our SQL syntax
is less expressive. Projection is implemented by iterating through
a set, projecting out each tuple individually. Cartesian product is
only slightly more complicated, requiring two iterations. To com-
pute the product of A and B, for each a ∈ A we compute the set
{ fuseTuples a b | b ∈ B } and then union the results.

In addition to defining the relational operations, we need a
number of lemmas to support basic reasoning. For instance, when
we project out column n from schema I , using a proof pf that n
is less than the length of I , we must demonstrate that we get the
same result as when we use a different proof pf ′. (This lemma
is proof irrelevance for colType). These foundational lemmas are
typically easy to prove but nonetheless required. Similarly, our
use of dependent types means that we often run into situations
where we would like schemas to be definitionally equal but they
are only propositionally equal, and so we are forced to reason about
equality explicitly. This leads to more verbose theorem statements
and proofs.

To gain confidence in the accuracy of our model of the relational
algebra, we have shown that several dozen standard equivalences
are derivable from our definitions. We also use these identities to
justify the correctness of our query optimizations.

Some equivalences are universally valid; for example, the com-
mutativity of selection:

select P1 (select P2 R) = select P2 (select P1 R)

Other equivalences only apply in the presence of constraints on the
input relations. For instance, let A and B be relations over schemas
I and J , respectively, and let l indicate the columns 0...|I| − 1.
Then we have the following conditional equivalences:

B <> empty -> proj l (prod A B) = A
B = empty -> proj l (prod A B) = empty

Proving this statement requires reasoning about how projection
of l can be pushed through the nested iteration that defines the
product. The actual proof proceeds much like on paper: first we
demonstrate that every element in the product of A and B must
be a fused tuple of the form fuseTuples x y, and that fusing
x with y followed by projection by l yields x. The theorem then
follows from showing that every element of A has at least one
corresponding fused tuple in the product of A and B, provided B is
non-empty. We constructed proofs manually, but it may be possible
to adapt an automated theorem prover for relations (e.g., [25]) to
Coq to reduce the proof burden.

4. The SQL Compiler
In the previous section we described our Coq encoding of a model
for relational data and algebraic operations on relations. In this
section we describe the front-end of our SQL implementation and
relate it to this model.

4.1 Abstract Syntax
We define a subset of SQL abstract syntax with a Coq data type that
is indexed by the schema of the relation that the expression denotes.



Variables, which are really table names, are represented as strings
and are explicitly typed. The overall effect is that queries are well-
typed by construction and coupled with our other design decisions
means that they can always be given a meaning in terms of the
relational algebra. Queries are defined by the following inductive
data type:

Inductive Query : Schema -> Set :=
| varExp : forall I, string -> Query I
| unionExp : forall I,

Query I -> Query I -> Query I
| diffExp : forall I,

Query I -> Query I -> Query I
| selectExp : forall I,

whereExp I -> Query I -> Query I
| projExp : forall I (l:list nat)(pf: bounded I l),

Query I -> Query (colTypes l pf)
| prodExp : forall (I J: Schema),

Query I -> Query J -> Query (I++J).

The projection expression requires a proof that the columns l that
define the projection are each less than the length of I . Selection is
defined using an additional syntax for predicates over tuples. Our
definition of selection lets us use arbitrary Coq functions (that re-
spect the setoid equality), but we restrict users to only certain kinds
of predicates (whereExps). We support boolean combinations of
comparisons between columns and constants. That is,

Inductive atomicExp (I : Schema) : tname -> Set :=
| const: forall t (c:tnameDenote t), atomicExp I t
| col : forall n (pf: n < length I),

atomicExp I (colType I n pf).

Inductive compareExp I : Set :=
| compareEq : forall t, atomicExp I t ->

atomicExp I t -> compareExp I
| compareLt ...

Inductive whereExp I :=
| compExp: compareExp I -> whereExp I
| andExp : whereExp I -> whereExp I -> whereExp I
| orExp ...

4.2 Parsing
The RDBMS uses Ynot’s packrat PEG parser [5] to parse user
input. The parser is implemented as a verified compiler [12]: given
a specification consisting of a PEG grammar and semantic actions,
the parser creates an imperative computation that, when run over an
arbitrary imperative character stream, returns a result that agrees
with the specification. To make the parsing efficient, the packrat
algorithm used by the resulting computation uses a sophisticated
caching strategy that is implemented using imperative hash tables.

Queries written in our abstract syntax resemble SQL statements,
but to support some features of SQL our system must express the
operations in terms of the basis we have chosen. SQL supports, for
instance, syntax for both cartesian product and join, but our basis
only has product. Hence an SQL-ish join query, such as:

SELECT 0, 1, 2 FROM
(JOIN tbl1 , tbl2 ON col 0 = col 0)

WHERE col 0 = "hello world" AND col 1 < col 3

is translated by our system into a product, selection, and projection:

SELECT 0, 1, 2 FROM
(SELECT 0, 1, 2, 4, 5
FROM tbl1, tbl2 WHERE col 0 = col 3)

WHERE col 0 = "hello world" AND col 1 < col 3

assuming that tbl1 has 3 columns (indexed 0-2 in the product).
During query optimization, selection fusion will optimize this
query (Section 4.4).

4.3 SQL Semantics
To give a query a meaning in terms of the relational algebra we need
to know the relations that correspond to the query’s variables. These
relations correspond to the actual data that the user has loaded,
and the association between the variables and the tables is captured
using the traditional mechanisms of a context and an environment:

Definition Ctx := list (string * Schema).

Fixpoint Env (G: Ctx) : Set :=
match G with

| nil => unit
| (_, J) :: b => Relation J * (Env b)

end.

When an environment has a (properly-typed) relation corre-
sponding to each variable in a query (which is easy to check), the
denotational semantics of a query is defined by recursively apply-
ing the relational operations or looking up the value of a table in
the environment as necessary:

Fixpoint denote (I: Schema) (q: Query I)
(G: Ctx) (E: Env G) : Relation I :=
match q with

| varExp J v => lookup E I v
| unionExp J a b =>

union (denote a) (denote b)
| diffExp J a b =>

diff (denote a) (denote b)
| selectExp J r f =>

select (whereDenote f) (denote r)
| projExp J l pf e => proj l pf (denote e)
| prodExp I’ J’ a b =>

prod (denote a) (denote b)
end.

This definition uses an auxiliary denotation function whereDenote:
whereExp I -> Tuple I -> bool with the obvious definition.

4.4 Source-to-Source Optimization
A query optimization is a semantics-preserving source-to-source
transformation (over the typed SQL syntax) that ideally reduces
execution time. For instance, common optimizations include reduc-
ing the number of joins in a query and pushing selection towards
the leaves. These work well in practice because joins tend to dom-
inate query execution time, and selection tends to reduce relation
size.

In our system optimization is a distinct phase before execution.
We have implemented a number of optimizations, including the
following three from a standard introductory database textbook [6]:

• Selection fusion. The query select P2 (select P1 Q) can
be transformed to a single selection: select (P1 and P2) Q.

• Projection fusion. The query proj l2 (proj l1 Q) can be
transformed to use a single projection: proj (l2 ◦ l1) Q,
where (l2 ◦ l1) is the composition of permutations l1 and l2.

• Selection-Projection re-ordering. The query select P (proj
l Q) can be transformed to proj l (select P’ Q), where
P’ is P extended to operate over tuples with additional columns.

In principle any of the several dozen algebraic identities that we
have proven can be used as the basis of a transformation, although
not all will be beneficial.



4.4.1 Cost Estimation
We would like a lightweight way to check whether or not our op-
timizations are likely to reduce running time. We can estimate the
execution time and resulting relation size for a query by making
conservative assumptions about the data and the algorithms being
used to implement the relational operations. Currently, we assume
that selection and projection must iterate through every tuple in
a relation, and that computing the union, difference, or product
of two relations requires comparing every tuple in both relations.
Of course, these assumptions are overly pessimistic – in practice,
union can be an O(n + m) operation assuming the data are sorted,
not an O(n·m) one – but we are only interested in the difference be-
tween the running time of the query before and after optimization.
Because this simple cost model is data-independent, it does not in-
corporate useful assumptions such as how selection decreases the
cardinality of relations. However, even using this simple model we
can still show that some of our optimizations, like selection fusion,
do not increase cost.

4.4.2 Semantic Optimization
Semantic optimizations [8] are rewrites that are semantics-preserving
only because of the specific constraints on the particular database
instance at hand. Our “proj-prod” equivalence for relations A and
B of schemas I and J where l is the columns 0...|I| − 1:

B <> empty -> proj l (prod A B) = A
B = empty -> proj l (prod A B) = empty

can be used as such an optimization because which rewrite to per-
form depends on whether or not B is empty. Our RDBMS tracks
the emptiness of user tables through load operations and provides
this information to a semantic optimization, which can rewrite
and witness the semantics preservation with the available empti-
ness proof. Semantic information about relations is maintained in
RelInfo records:

(* Relation information *)
Record RelInfo := relInfo {

isEmpty : bool
}.

(* Meta data for each table *)
Definition DbInfo : string -> Schema -> RelInfo.
Definition ra_sem_rewrite : Set :=
DbInfo -> (forall I, Query I -> Query I).

In the future, this record can be elaborated with additional statis-
tics, such as the number of tuples in the relation and selectivity
properties of certain columns, allowing the optimizer to optimize
queries more intelligently. For example, we might choose an order
for symmetric operations so as to iterate over the smaller relation.

The optimization associated with the “proj-prod” equivalence
identifies expressions of the form proj l (prod q v), where q
is a query over schema I , and v is a variable of schema J . The
optimization uses the DbInfo to decide which rewrite to apply.

We need one final component to ensure that semantic optimiza-
tions are used correctly: we need to make sure that the RelInfo
information associated with the database is accurate. This is nec-
essary to prove that the semantic optimizations are in fact meaning
preserving. Therefore we guarantee that our database is always in
a state such the following invariant holds:

Definition accurate (m: DbInfo)
(G: Ctx) (E: Env G) : Prop :=
forall s I, getRelation s I E = empty <->

isEmpty (m s I)

Semantic optimizations are well studied but have traditionally
been difficult to deploy. In [8] the authors argue that the limiting
factor for industrial deployment of semantic optimizations is the
lack of support for explicitly manipulating symbolic constraints.
One benefit of our formalization is that semantic optimization be-
comes less risky because we are required to prove semantic preser-
vation formally.

5. The SQL Execution Engine
Once a query has been optimized, our RDBMS executes the query
using a sequence of operations over imperative finite maps. Antic-
ipating the use of keys for indexed retrieval (see Section 5.3), we
use maps from keys to values, instead of sets. Our finite maps are
implemented using B+ trees as described in Section 6, but the en-
gine is insulated from this detail by working in terms of a generic
interface. Indeed, it is possible to replace the implementation with
an alternative, such as a finite map based on hash tables. In this
section, we describe the finite map interface, how SQL queries can
be naı̈vely implemented in terms of the interface, and how key con-
straints can be utilized to optimize query execution.

5.1 The Finite Map Interface
The finite map interface is specified with two components: the first
is a functional specification that describes finite maps as simple as-
sociation lists that map keys to values. The second is an imperative
specification, in the style of Hoare Type Theory (HTT) [14] and
realized by the Ynot extension to Coq [15]. In an HTT specifica-
tion, we describe operations over an imperative Abstract Data Type
(ADT) using commands indexed by pre- and post-conditions. We
use the functional model to describe the state of the ADT before
and after the command is executed and to relate the result of the
command to the pre- and post-state of the ADT.

The functional state of a finite map is given by a sorted associ-
ation list of key-value pairs. The ADT operations, such as lookup
and insert, have simple definitions as pure Coq code:

Parameters key value : Set.
Definition AssocList := list (key * value).

Fixpoint specLookup (k : key) (m : AssocList)
: option value :=
match m with

| nil => None
| (k’,v) :: b => if k’ = k then Some v

else specLookup k b
end.

Fixpoint specInsert (k : key) (v : value)
(m : AssocList) : AssocList :=
match m with

| nil => (k, v) :: nil
| (k’,v’) :: b =>

match compare k’ k with
| LT => (k’,v’) :: specInsert k v b
| EQ => (k ,v ) :: b
| GT => (k ,v ) :: (k’,v’) :: b

end
end.

The imperative interface is shown in Figure 2. It specifies an
abstract type handle that represents a handle on the imperative
state of the finite map. Next, the interface requires a predicate rep
that connects a handle to an association list in a particular state. The
intention is that the predicate reph ` should hold in a heap when
the ADT h represents the association list `.



(* The abstract type of imperative finite maps. *)

Parameter handle : Set.

(* The predicate rep h m holds in a heap when the finite map h represents the association list m. *)

Parameter rep : handle -> AssocList key value -> heap -> Prop.

(* Newly created finite maps are empty (emp is the empty heap assertion in separation logic), and so represent the nil association list. *)

Parameter new : Cmd emp (fun h : handle => rep h nil).

(* Destroy a finite map, reclaiming the memory used. The return type is unit. *)

Parameter free : forall (h : handle) (m : AssocList), Cmd (rep h m) (fun _:unit => emp).

(* The function lookup h k can be run in a state where h represents some model m, and it returns the value associated with k in m. In the
post-state, h continues to represent m.*)

Parameter lookup : forall (h : handle) (k : key) (m : AssocList),
Cmd (rep h m) (fun res : option value => rep h m * [res = specLookup k m]).

(* The function insert h k v can be run in a state where h represents some model m. In the post-state, h represents m extended to map k to
v. The operation returns the old value associated with k (if any). *)

Parameter insert : forall (h : handle) (k : key) (v : value) (m : AssocList),
Cmd (rep h m) (fun res : option value => rep h (specInsert v m) * [res = specLookup k m]).

(* Fold a command over the elements of the map. The I serves as a loop invariant on the command, relative to the list of elements that have
been touched at each step in the computation. *)

Parameter iterate : forall (T : Type) (h : handle) (I : T -> AssocList -> heap -> Prop)
(tm : AssocList) (acc : T)
(fn : forall (k: key) (v: value) (acc: T) lm, Cmd (I acc lm) (fun a:T => I a (lm ++ (k, v) :: nil))),
Cmd (rep h tm * I acc nil) (fun res:T => rep h tm * Exists tm’, I res tm’ * [Permutation tm tm’]).

Figure 2. The Imperative Finite Map Interface.

The rest of the interface gives the specifications for the finite
map operations. The specifications are encoded using a type Cmd of
imperative commands (also called computations) that are indexed
by pre- and post-conditions over the heap. Cmd is similar to the
IO and ST monads in Haskell except that the indices capture the
behavior of the command in a Hoare-logic style. The intention
is that given a CmdP Q, we can run the command in any state
satisfying P , and if that command terminates, then we are assured
that Q holds on the final state. Furthermore, we are guaranteed that
the computation will not terminate prematurely due to type errors
or other run-time errors such as null-pointer dereferences.

The pre- and post-conditions are specified using a variant of
separation logic [18, 22], and commands are constructed to satisfy
the frame rule with respect to separating conjunction. In other
words, if c : CmdP Q, then c also has type Cmd (P ∗ R) (Q ∗ R)
for any heap predicate R, where “∗” is separating conjunction.

For example, the new command specifies emp as a pre-condition
and thus demands that the heap is empty. It returns a handle h and
terminates in a state where h represents the empty association list.
Because new satisfies the frame rule, it can be run in any heap
satisfying a property R, and we are ensured that R continues to
hold after executing the command.

The free rule is dual to new. It requires that we pass in a handle
which, in the initial state, represents some association list m. The
post-condition specifies that the heap will then be empty. But as
before, this can be run in any larger, disjoint heap satisfying a pred-
icate R, and we are ensured R continues to hold after execution.

The lookup operation takes a handle representing association
list m and a key k and returns an optional value. The post-condition
captures the facts that: (1) the returned value is equivalent to doing a
functional lookup on the model list m; and (2) the handle continues
to represent m in the post-state. The brackets around the expression

“res = specLookup k m” are notation for lifting a pure predi-
cate (type Prop) to a predicate over heaps (type heap -> Prop).

The insert operation takes a handle h, key k, and value v such
that h represents association list m on input, and it ensures that
h represents the result of inserting (k, v) into m on output. The
command also returns the old value (if any) that was assigned to k
in the input state; this makes it easy to undo the insertion.

The iterate operation is a higher-order command that iterates
over the elements of the finite map, applying another command
fn to each key-value pair and an accumulator to yield a final
value. The computation is parameterized by an invariant I which
is used to accumulate logical results about the iteration of fn.
The separating conjunction ensures that fn cannot change the map
during iteration.

In the actual code, the association list parameters are marked
as computationally irrelevant using the approach described in our
previous work on Ynot [5]. This ensures that these values are only
used in types and specifications and do not affect the behavior of
programs. Consequently, the extracted ML code does not need to
include them, and these model values incur no run-time overhead.

5.2 Interpreting SQL Operations
Our SQL engine executes queries using the finite map interface.
In an industrial RDBMS, the engine would be able to choose from
multiple relation representations and algorithms (e.g. hash tables vs
B+ trees, hash-join vs merge-join, etc.), and an input query would
be explicitly lowered into another intermediate form that more
closely corresponds to these implementation choices. This lowered
form is also typically optimized again. In our case, however, we
simply execute queries by directly interpreting them as sequences
of finite map operations, as described below:



• Union. To union A and B, iterate through A, inserting
each (k, v) ∈ A into B.

• Difference. To subtract B from A, iterate through A,
inserting each a ∈ A into a new relation when a /∈ B.

• Projection. To project columns from A, iterate through A,
inserting the projected tuples into a new relation.

• Selection. To select rows from A, iterate through A, inserting
tuples that meet the criteria into the new relation.

• Product. To compute the cartesian product of A and B,
iterate through each a ∈ A and, for each a ∈ A, iterate
through each b ∈ B, inserting a fused tuple a + b into the
new relation.

5.3 Taking Advantage of Key Constraints
Key constraints are useful both for ensuring data integrity and
for increasing performance. When a user loads a table into our
RDBMS, they may indicate which of the columns are intended to
form a key for the table. Given a relation R over schema I , a subset
i of I’s columns is a key for R iff for every two tuples x, y ∈ R, we
have that proj i x = proj i y implies x = y. A good example of a
key is a person’s social security number; in principle, knowing this
value is enough to uniquely identify a person. In general, a relation
may have many keys, and the set of all of a relation’s columns
always forms a key. It is easy to check if a set of columns forms a
key, and our RDBMS aborts the loading process if a key constraint
is violated.

We are working toward (but have not completed) taking advan-
tage of key constraints using the finite map interface to execute
point queries in logarithmic time using lookup. A point query is a
degenerate range selection [7] where the predicate uniquely iden-
tifies a tuple. The predicate must consist of a set of equalities be-
tween columns and values such that the columns form a key for the
relation being scanned. For example, suppose we have a table with
two columns, user name and password, where user name is a key.
To determine a user’s password, we might run the following query:

SELECT 1 FROM users WHERE col 0 = "Adam"

Since the name is a key we know that there exists at most one entry
in the relation with the name “Adam”. Furthermore, if the name is
indexed, then we can directly call the finite map’s lookup operation
which answers the query in logarithmic time rather than linear time.

6. The B+ Tree Implementation
At the core of our RDBMS is an implementation of the finite map
interface of Figure 2 using a B+ tree [1], a ubiquitous data structure
when ordered key access is common. (In industrial RDBMSs, B+
trees are also used to build additional indices into relations). In
this section we describe the B+ tree implementation as well as the
choices we made for representing the structure in separation logic
and reasoning about its correctness.

A B+ tree is a balanced, ordered, n-ary tree which stores data
only at the leaves and maintains a pointer list in the fringe to make
in-order iteration through the data efficient. Figure 3 shows a simple
B+ tree with arity 3.

As with most tree structures, B+ trees are comprised of two
types of nodes:

• Leaf nodes store data as a sequence of at most n key-value pairs
in increasing order. Leaves use the trailing pointer position to
store the pointer to the next leaf node.

• Branch nodes contain a sequence of at most n pairs of keys
and subtrees. These pairs are ordered such that the keys in a
subtree are less than or equal to the given key (represented in

3 5

1 2

one two

6 7

six

10

tensev

4 5

four five

treeSorted Min Max

treeSorted Min (Key 3) treeSorted (Key 3) (Key 5) treeSorted (Key 5) Max

Figure 3. B+ tree of arity 3 with numeric keys and string values.

the figure as treeSorted min max). For example, the second
subtree can only contain values greater than 3 and less than or
equal to 5. In addition to the n sub-trees, branch nodes include
a final subtree that covers the upper span. In the figure, this is
the span greater than 5.

B+ trees must maintain several additional invariants needed to
ensure logarithmic-time insertion and lookup. First, non-root nodes
must contain at least dn

2
e keys. Second, if the root node is a branch,

it must contain at least 2 children. Third, all subtrees of a branch
must be the same height.

6.1 B+ Tree Representation and Invariants
In order to meet the finite map interface, we need to characterize
B+ trees and their associated heaps. As previously mentioned, B+
trees are parameterized by an arity (previously n) which we will
call SIZE which must be greater than 1, and, for simplicity when
reasoning about division by 2, even:

Parameter SIZE : nat.
Parameter SIZE_min : 1 < SIZE.
Parameter SIZE_even : even SIZE.

In the heap, we store records that represent nodes in the tree. These
are represented by the following Coq data type:

Record bpt_node : Set := mkBpt {
height : nat;
content : array;
next : option ptr

}.

The content field stores an array of length SIZE; the type of values
in the array are captured in the heap assertions. Following common
C practice, we use the next field to encode the final child when
the node is a branch and the next pointer in the linked-list of leaves
when the node is a leaf.

Our next task is to define predicates that describe when a heap
contains a tree with a valid shape. To simplify this task, we first
define a functional model of the tree, which we call a ptree:

Fixpoint ptree (h : nat) : Set :=
ptr * match h with

| 0 => list (key * value)
| S h’ => list (key * ptree h’) * ptree h’
end.

In this definition, ptrees are indexed by a height h. When the
height is 0, the ptree consists of a pointer and list of keys and
associated values. When the height is h′+1 for some h′, the ptree
consists of a pointer, a list of keys and ptrees of height h′, and
a final ptree of height h′. Our general strategy is to associate a
ptree model with each B+ tree, to capture the salient aspects of its
shape. We then impose well-formedness constraints on the model,
such as the requirement that the keys in a node are sorted.



We say that a ptree p of height h is a model of a B+ tree with
root pointer r when the predicate repTreeh r None p holds. This
predicate is defined to capture the shape constraints of B+ trees as
described above and uses two auxiliary predicates, repLeaf and
repBranch discussed below:

repTree 0 r optr (p′, ls) ⇐⇒
[r = p′] ∗ ∃ary. r 7→ mkNode 0 ary optr ∗
repLeaf ary |ls| ls

repTree (h + 1) r optr (p′, (ls, nxt)) ⇐⇒
[r = p′] ∗ ∃ary.r 7→ mkNode (h + 1) ary (ptrFor nxt) ∗
repBranch ary (firstPtr nxt) |ls| ls ∗
repTree h (ptrFor nxt) optr nxt

The repTree predicate has two cases, depending upon the ptree’s
height. In both cases, we require that the root of the B+ tree r is
equal to the pointer recorded in the ptree (determined by ptrFor)
and that r points to a node record with appropriate information,
including an array. The firstPtr function computes the pointer of
the first leaf in the given tree and is used to ensure the link between
adjacent subtrees. When the ptree height is zero, we require that
the array holds the list of key-value pairs in the ptree as defined
by the repLeaf predicate:

repLeaf ary n [v1, ..., vn] ⇐⇒
ary[0] 7→ Some v1 ∗ ... ∗ ary[n− 1] 7→ Some vn∗
ary[n] 7→ None ∗ ... ∗ ary[SIZE − 1] 7→ None

When the height of the ptree is non-zero, we require that the array
holds a list of key-pointer pairs and that these are valid models for
the key-sub-tree pairs specified by the ptree. These properties are
captured by the repBranch predicate:

repBranch ary n optr [(k1, t1), ..., (kn, tn)] ⇐⇒
ary[0] 7→ Some (k1, ptrFor t1)∗
repTree h (ptrFor t1) (firstPtr t2) t1 ∗ ...∗

ary[n− 2] 7→ Some (kn−1, ptrFor tn−1)∗
repTree h (ptrFor tn−1) (firstPtr tn) tn−1∗

ary[n− 1] 7→ Some (kn, ptrFor tn)∗
repTree h (ptrFor tn) optr tn∗

ary[n] 7→ None ∗ ... ∗ ary[SIZE − 1] 7→ None

These definitions are encoded as a set of mutually-recursive Coq
fixpoints which describe, computationally, the heap-shape of a
given ptree.

In order to iterate over the elements of the B+ tree, we only
need access to the leaves. Consequently, in addition to the repTree
predicate, we have defined predicates repLeaves and repTrunk
which separate the tree into two disjoint components. This facili-
tates reasoning about operations such as iteration, which only need
access to the leaves. A critical lemma connects the two views:

Theorem repTree_iff_repTrunk : forall h (r : ptr)
(optr : option ptr) (p : ptree h) (H : heap),
repTree r optr p H <->
(repTrunk r optr p *
repLeaves (Some (firstPtr p)) (leaves p) optr) H.

Here leaves extracts the leaves of a ptree. Bornat et al. [3]
choose to use classical conjunction to capture these two views of
the tree. We found it more convenient to prove an equivalence and
forgo the conjunction, since most operations do not use the leaf list
and it reduces the burden of proving additional facts about the leaf-
trunk division. In addition to the heap shape described by repTree,
the model must satisfy the appropriate sortedness constraints. Re-
call that this consists of an ordering on the elements in a node and
between the keys and subtrees as shown in Figure 3. More formally,

the constraints are captured by the predicate treeSorted:

treeSorted 0 min [(k1,−), ..., (kn,−)] max ⇐⇒
min < (Key k1) ∧ k1 < k2 ∧ ... ∧ (Key kn) ≤ max

treeSorted (h + 1) min [(k1, t1), ..., (kn, tn)] max ⇐⇒
treeSorted h min t1 (Key k1)∧
treeSorted h (Key k1) t2 (Key k2) ∧ ...∧
treeSorted h (Key kn−1) tn max

where min and max are drawn from the inductively defined type:

Inductive exkey: Set :=
| Min: exkey | Key: key -> exkey | Max: exkey.

which provides minimal and maximal elements, and where key
comparisons are lifted to exkey in the obvious way.

Finally, to satisfy the finite map interface of Figure 2 we must
define an abstract type handle that abstracts the details of the B+
tree implementation and hides the internal definitions of ptrees
and their associated properties. The abstract rep predicate relates
B+ tree handles and key-value association lists in a given state.

We begin by defining a function as map which extracts an
association list of keys and values from a ptree:

Fixpoint as_map (h : nat) : ptree h -> AssocList :=
match h as h return ptree h -> AssocList with

| 0 => fun m => snd m
| S h’ => fun m =>
List.flat_map (fun x => as_map (snd x))

(contents m) ++ as_map (next m)
end.

Finally, we define a handle to be a pointer to a pair, where the
first component is the root of the B+ tree, and the second is the
irrelevant ptree model for the B+ tree. These facts, along with the
shape and sortedness invariants, are captured in the definition of the
rep predicate, which is similar to the definition below:

Definition handle : Set := ptr.

Definition rep (hdl : handle) (m : AssocList)
: heap -> Prop :=
Exists (r : ptr) (h : nat) (p : ptree h),

hdl --> (r, existT (fun h => [ptree h]) h p) *
repTree h r None p *
[m = as_map p] * [treeSorted h p Min Max].

In this definition, we have taken some notational liberties by using
“Exists” to stand for heap-dependent existential quantification
and “-->” to represent the points-to relation. By packing the ptree
model with the actual B+ tree, we avoid the need to search for a
model during proofs. Rather, as the B+ tree is updated, we perform
the corresponding (functional) updates on the associated model.
This sort of “ghost state” is often useful for simplifying Hoare-style
proofs.

An alternative to packaging the B+ tree with its model is to
simply show that there is at most one ptree that a given pointer and
heap can satisfy (i.e., that repTree is precise [4, 17]). However,
this is complicated by the fact that the types of ptrees are indexed
by height, and thus comparison (and substitution) demand the use
of heterogenous, “John Major” equality [10].

6.2 Implementation of B+ Tree Operations
In order to meet the finite map specification, we must provide the
five operations given in Figure 2. The implementations of new and
free are relatively straightforward.

Both lookup and insert recurse over the tree to find the leaf
which should contain a given key, perform the appropriate action



on the leaf, and merge the result into the tree. Sexton and Thi-
elecke [24] formulate this by building a language of tree-operations
for a stack-machine. We take a similar approach by factoring out
the steps of finding the appropriate leaf, performing an operation,
and then merging the results. This is encapsulated in the traverse
command which takes an operation cmd to apply at the leaf. The
definition of traverse is sketched in Figure 4 as ML code.

let traverse tKey tree cmd =
let (v,ms) = trav tkey !tree cmd in
(tree := match ms with

| Merge tr’ -> tr’
| Split l k r ->
buildTree ((k,l)::nil) r

end) ; v

let rec trav tKey tree cmd =
if isLeaf tree then
cmd tree

else
let tr = findSubtree tKey tree in
let (v,ms) = trav tKey tr cmd
(v,
match ms with
| Merge tr’ -> replaceSubtree tKey tree tr’
| Split l k r -> spliceSubtree tKey tree l k r
end)

Figure 4. The traverse function for performing leaf-local tree
computations.

A call to traverse invokes a helper operation trav which
searches for the appropriate leaf using tKey to guide the search
and then executes cmd on that leaf. The execution of cmd, or a
recursive call to trav, results in a value v and either a new tree
(Merge tr’) or a pair of trees l and r and a key k (Split l k
r) such that k is greater than or equal to the elements of l and less
than the elements of r. In the former case, we simply replace the
original sub-tree with the newly returned tree. In the latter case,
we must splice the two trees into the current node or, at the top-
level, build a fresh node (increasing the height of the tree by one.)
The spliceSubtree operation must replace the old sub-tree tr
with the new sub-trees l and r. In the easy case, we have room
in the interior node’s array, but must shift some elements over to
make room. In the hard case, we may not have room and thus must
split the node in half and return a pair of trees to the caller. The
key point is that traverse is general enough to support a range of
operations, including both lookup and insert, while maintaining
the B+ tree invariants.

Of course, our Ynot code demands considerably more annota-
tion to capture the specification of the cmd argument, and to reflect
the appropriate invariants for recursion, as well as the proofs that
the code respects pre- and post-conditions. For example, to describe
the post-condition for cmd, we abstract over a return type T for the
value returned by cmd and predicate Q of type:

Q : AssocList→ T → AssocList→ heap→ Prop

The predicate is intended to capture the effect of executing cmd by
relating the association list model before and after the command is
executed, as well as the value returned by cmd. For example, we
can implement lookup by using a command with post-condition
specified by:

Qlookup mpre rt mpost =
[mpost = mpre] ∗ [rt = specLookup tKey mpre].

Here, the model (i.e., list of key-value pairs in the leaves) remains
unchanged, and the return value is equivalent to performing a
functional lookup on the initial association list. We can implement
insert by using a command with post-condition specified by:

Qinsert mpre rt mpost =
[mpost = specInsert tKey tV alue mpre] ∗
[rt = specLookup tKey mpre].

This captures the fact that the new model is obtained from the old
by inserting the key-value pair into the association list and that the
returned value is equal to the result of looking up the key in the
original model.

In addition, we need knowledge that the effect of running
traverse (and hence trav) on the tree will only affect the path
from the root to the leaf of interest. That is, we must show that Q
satisfies a frame property with respect to the rest of the model:

∀H min min′ max′ max tKey low i i′ hi rt,
min′ < tKey ≤ max′ →
sorted min′ i max′ → sorted min′ i′ max′ →
sorted min low min′ → sorted max′ hi max→
Q i rt i′ H → Q (low++i++hi) rt (low++i′++hi) H

The frame properties for Qlookup and Qinsert follow from the fact
that specLookup and specInsert do not alter portions of the tree
which do not intersect the target key.

The abstraction provided by traverse considerably reduces
the burden of writing and verifying both lookup and insert, since
we only need to define the operation to perform at the leaf. Further-
more, we believe that traverse will be useful for defining other
operations which traverse the B+ tree. One such simple operation
is insertion without replacement in a single traversal.

The final interface command is iteration. Verifying the imple-
mentation of iterate relies crucially on our ability to view a B+
tree in two ways, as per theorem repTree iff repTrunk. Con-
ceptually, the implementation can be broken into 4 steps:

1. Follow left links in the tree until the first leaf is reached.

2. Change views, separating the heap into trunk and leaves.

3. Iterate over the “skirt,” calling a function on each element in
each leaf.

4. Change views, recombining the leaves and trunk.

Step 1 is a simple recursion of the tree which could be eliminated
if the head of the skirt was stored along with the root. Steps 2 and 4
are purely proof-associated steps, incurring no run-time overhead,
and follow immediately from the repTree iff repTrunk theo-
rem defined previously. Step 3 is a straightforward, nested iteration
over a linked-list of arrays.

7. The Storage Manager
The RDBMS maintains an environment of tables in memory, and
persistence is implemented by serializing the relations as strings
and writing/reading these strings from disk using inverse functions.
A set of saved tables can be loaded with a user command, and
the relation information is checked and constructed during loading.
Verification amounts to checking an internal consistency property
that ensures reading and printing are appropriate inverses:

PrintTable: forall I, Relation I -> string
ReadTable : forall I, string -> option (Relation I)
Theorem storage_ok : forall I (tbl: Relation I),
ReadTable (PrintTable tbl) = Some tbl.



8. Evaluation
Overall, we found this project to be extremely challenging, as it re-
quired a wide range of formalization tasks, from encoding seman-
tics and compiler correctness, to reasoning about pointer-based data
structures, to issues involving parsing and serialization. On the one
hand, it is impressive that Coq supports such a wide range of tasks
and, furthermore, provides the abstraction capabilities to allow for
such a modular decomposition. On the other hand, we found the
difference between informal models and invariants and their Coq
representations to be much larger than one would hope.

It is instructive to begin by comparing the amount of different
kinds of code that make up the development. Figure 5 describes
the breakdown of functional code, imperative code, and proofs
in our RDBMS. The “Functional” column gives line counts for
both pure code (including specifications) and functional code used
at run-time. The “Imperative” column gives line counts for Ynot
code, which is written in a style that generates a large number of
verification conditions. The “Proofs” column gives line counts for
both tactics and Coq terms used to construct proofs.

Functional Imperative Proofs
Model 360 0 700

SQL Compiler 840 0 440
SQL Engine 0 250 1350

B+ tree 360 510 5190
Storage 450 160 340

Total 2110 920 8020

Figure 5. Numbers of lines of different kinds of code

These totals do not include our FSet modifications and the base
Ynot tactics and data structures that we use (such as the packrat
parser toolkit). They do include the [de]serializers for basic types
and the grammars used for parsing queries and tuples. Line counts
were taken “as-is”, and there is no doubt that we can improve these.
Nevertheless, the numbers indicate that formalizing a system to this
degree requires a substantial investment over and above the code.
On the other hand, many of the components are directly re-usable
in other contexts (e.g., the finite map interface and its associated
theory, the B+ trees, etc.).

8.1 Some Lessons Learned
In what follows we highlight some of the lessons learned from our
development. Many of these lessons are well known to Coq experts,
but we hope this discussion will help those interested in similar
developments.

There are a number of design decisions we made that initially
seemed “right” but ultimately led to complicated proofs. For exam-
ple, it took many tries to find the right formulation of the invariants
for the B+ trees. Originally, we avoided introducing the intermedi-
ate ptree models described in Section 6.1. Instead, we tried to de-
fine predicates that would directly connect association lists with the
pointer graph in the heap. However, this definition required a large
number of existential quantifiers (up to 25 in many goals). This
made reasoning difficult, as we were forced to provide witnesses
explicitly. Introducing ptrees and explicitly associating them with
the B+ tree as ghost state helped avoid this complication.

In general, we found that one should avoid disjunctions of any
flavor when something can be readily computed. This is because
Coq will automatically reduce computations but requires explicit
guidance to eliminate disjunctions. For example, we originally en-
coded ptrees as an inductively defined type:

Inductive ptree (h:nat) : Set :=
| Leaf : ptr -> list (key * value) -> ptree 0
| Node : forall h, ptr -> list (key * ptree h) ->

ptree h -> ptree (S h).

However, eliminating such definitions in proofs requires an explicit
use of inversion, even when the height is known to be zero or non-
zero. In contrast, Coq automatically reduces the recursive definition
based upon match. In many cases, this substantially reduced the
number of manual steps needed in proofs.

Whether and how to use dependent types in our definitions was
another source of frustration. On the one hand, we found depen-
dency useful to capture schemas for relational operations and to
rule out various error cases that would otherwise arise. On the other
hand, writing transformations, such as the optimization to fuse ad-
jacent projections, requires tedious arguments and coercions to en-
sure that the output is well-typed. Newer languages such as Epi-
gram [11] and Agda [16] provide better support for programming
with dependent types, and Matthieu Sozeau is working to adapt
many of these ideas to the Coq setting [26], so we are hopeful that
this frustration will diminish over time.

Another lesson we have learned is the value of automation,
both through hints and custom tactics. This insulates proofs against
code changes and greatly speeds up the proof process as tactics
mature. In our previous work on Ynot [5], we advocated a style of
proof (derived from our colleague Adam Chlipala) where instead
of writing many small, manual proof steps, it is better to write a
custom tactic that searches for a proof of the goal. Our experience
with this project confirms the usefulness of this methodology. For
example, the proof terms for the B+ tree are about 22MB in size.
Writing them by hand would be impossible, but writing tactics that
search for these terms has proven remarkably robust throughout the
evolution of our code.

Another lesson we have learned is that the Coq modules are use-
ful for controlling name spaces, but their second-class nature makes
it difficult to use them effectively for abstraction. For instance, the
section mechanism of Coq, which is extremely useful for factor-
ing parameters, does not work well in the context of modules: we
cannot define a module within a section. Rather, we found core lan-
guage mechanisms, such as dependent records and type classes, to
be more useful than modules. Consequently, we avoided sophisti-
cated use of the module system when possible.

8.2 Related Formalization
A final lesson regards the formalization of relational algebra. The
idea of mechanizing (data models more general than) relational
algebra goes back to at least NuPrl [21]. The inspiration for our
work, however, is the formalization of the relational algebra in
Agda found in Carlos Gonzalia’s Ph.D. thesis [9]. Like that thesis,
we use axiomatic finite sets; however, we opted for a more concrete
tuple representation and a different, but equivalent, choice of base
relational operations.

The thesis (essentially) represents a schema as a function from
a finite set of columns to an Agda type.

Inductive Fin : nat -> Set :=
| zero : forall k, Fin (S k)
| succ : forall k, Fin k -> Fin (S k).

Definition Schema (k: nat) : Set := Fin k -> Set.
Definition Tuple k (I: Schema k) : Set :=
forall (col: Fin k), I col.

We originally adopted this representation, but found that the easiest
way to establish certain results like the decidability of equality over
schemas was to convert schemas into lists and use an isomorphism
between the two representations. Other times this representation



forced us to appeal to functional extensionality (∀x, fx = gx →
f = g), which is not a theorem in Coq. Using this axiom compli-
cates reasoning since axioms do not have computational behavior.
Finally, while induction on k is possible, our more concrete defini-
tion provides a direct induction principle that simplifies proofs.

We also differ from the thesis in our choice of relational basis
operations. We implemented cartesian product and included a per-
mutation operation to simplify SQL compilation. Instead of prod-
uct, the thesis implements join and supports projection through two
operations for splitting a relation in half. Although in principle the
two models are equivalent, certain operations possible in SQL, like
swapping two columns, are easier to encode in our basis.

In [19], Oury and Swierstra give a dependently-typed relational
algebra syntax that is similar to ours, but that uses column names
instead of numbers. Their approach leads to a different proof bur-
den; for instance, in their approach the schemas A and B must have
disjoint attribute names in A×B. We expect to study this particular
tradeoff more closely in the future.

9. Future Work
Our work lays the foundation for mechanically verified RDBMSs,
but to be practically useful for real systems, there are a number
of tasks that remain. Some of these tasks are relatively modest
extensions to the current implementation. For example, finishing
incorporating key information to enable efficient point and range
queries. This, along with additional relation statistics such as size
and selectivity measures, will enable additional optimizations such
as better join planning and more semantic optimizations. Addi-
tional B+ tree features needed for range queries will also enable
more efficient relational algorithms such as merge-join. Finally,
reifying the low-level query plan will allow us to fuse operations
to avoid materializing transient data. With these features, and sup-
port for aggregation and basic transactions, the system should be
usable for simple in-memory, single-threaded applications.

In the long term, realizing the ACID guarantees of concurrency,
transactional atomicity and isolation, and fault-tolerant storage will
demand substantial extension. For example, Ynot does not yet sup-
port writing or reasoning about concurrent programs, though we
have done some preliminary work extending Hoare Type Theory
with support for concurrency and transactions [13] based on the
ideas of concurrent separation logic [4]. We expect that implement-
ing and verifying the correctness of high-performance, concurrent
B+ trees will be a particularly challenging problem. As another ex-
ample, we need to find the right model for disk I/O – which accu-
rately reflects possible failure modes – and incorporate this into the
program logic. Our ultimate goal is to combine these features with
the enhancements above to obtain a fully verified, realistic RDBMS
that can be used in safety- and security-critical settings.
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