skip to main content
research-article

Amplifying lower bounds by means of self-reducibility

Authors Info & Claims
Published:29 March 2010Publication History
Skip Abstract Section

Abstract

We observe that many important computational problems in NC1 share a simple self-reducibility property. We then show that, for any problem A having this self-reducibility property, A has polynomial-size TC0 circuits if and only if it has TC0 circuits of size n1+ϵ for every ϵ> 0 (counting the number of wires in a circuit as the size of the circuit). As an example of what this observation yields, consider the Boolean Formula Evaluation problem (BFE), which is complete for NC1 and has the self-reducibility property. It follows from a lower bound of Impagliazzo, Paturi, and Saks, that BFE requires depth d TC0 circuits of size n1+ϵd. If one were able to improve this lower bound to show that there is some constant ϵ> 0 (independent of the depth d) such that every TC0 circuit family recognizing BFE has size at least n1+ϵ, then it would follow that TC0 ≠ NC1. We show that proving lower bounds of the form n1+ϵ is not ruled out by the Natural Proof framework of Razborov and Rudich and hence there is currently no known barrier for separating classes such as ACC0, TC0 and NC1 via existing “natural” approaches to proving circuit lower bounds.

We also show that problems with small uniform constant-depth circuits have algorithms that simultaneously have small space and time bounds. We then make use of known time-space tradeoff lower bounds to show that SAT requires uniform depth d TC0 and AC0[6] circuits of size n1+c for some constant c depending on d.

References

  1. Agrawal, M. 2001. The first-order isomorphism theorem. In Proceedings of the Conference on Foundations of Software Technology and Theoretical Computer Science (FST&TCS). Lecture Notes in Computer Science, vol. 2245. Springer-Verlag, Berlin, Germany, 70--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agrawal, M., Allender, E., and Rudich, S. 1998. Reductions in circuit complexity: An isomorphism theorem and a gap theorem. J. Comput. Syst. Sci. 57, 127--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ajtai, M. 1999. A non-linear time lower bound for Boolean branching programs. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos, CA, 60--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Allender, E. 2004. Arithmetic circuits and counting complexity classes. In Complexity of Computations and Proofs, Quaderni di Matematica, vol. 13. Seconda Università di Napoli, Napoli, Italy, 33--72.Google ScholarGoogle Scholar
  5. Allender, E. 2008. Cracks in the defenses: Scouting out approaches on circuit lower bounds. In Proceedings of Computer Science -- Theory and Applications (CSR 2008). Lecture Notes in Computer Science, vol. 5010. Springer-Verlag, Berlin, Germany, 3--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Allender, E., and Gore, V. 1994. A uniform circuit lower bound for the permanent. SIAM J. Comput. 23, 1026--1049. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Allender, E., Hellerstein, L., McCabe, P., Pitassi, T., and Saks, M. E. 2008. Minimizing disjunctive normal form formulas and AC0 circuits given a truth table. SIAM J. Comput. 38, 1, 63--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Allender, E., Koucký, M., Ronneburger, D., Roy, S., and Vinay, V. 2001. Time-space tradeoffs in the counting hierarchy. In Proceedings of the 16th Annual IEEE Conference on Computational Complexity (CCC). IEEE Computer Society Press, Los Alamitos, CA, 295--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Allender, E., and Ogihara, M. 1996. Relationships among PL, #L, and the determinant. RAIRO - Theoret. Inf. Appl. 30, 1, 1--21.Google ScholarGoogle ScholarCross RefCross Ref
  10. Applebaum, B., Ishai, Y., and Kushilevitz, E. 2006. Cryptography in NC0. SIAM J. Comput. 36, 4, 845--888. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Barrington, D. A. 1989. Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38, 1 (Feb.), 150--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Barrington, D. A. M., Straubing, H., and Thérien, D. 1990a. Non-uniform automata over groups. Inf. Comput. 89, 2, 109--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Barrington, D. M., Immerman, N., and Straubing, H. 1990b. On uniformity within NC1. J. Comput. Syst. Sci. 41, 3 (Dec.), 274--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Beame, P., Saks, M., Sun, X., and Vee, E. 2003. Super-linear time-space tradeoff lower bounds for randomized computation. J. ACM 50, 154--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Buss, S. 1993. Algorithms for Boolean formula evaluation and for tree contraction. In Arithmetic, Proof Theory, and Computational Complexity, Oxford Logic Guides, vol. 23. Oxford Science Publications, 96--115.Google ScholarGoogle Scholar
  16. Buss, S., Cook, S., Gupta, A., and Ramachandran, V. 1992. An optimal parallel algorithm for formula evaluation. SIAM J. Comput. 21, 755--780. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Buss, S. R. 1987. The Boolean formula value problem is in Alogtime. In Proceedings of the ACM Symposium on Theory of Computing (STOC). ACM, New York, 123--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Caussinus, H., McKenzie, P., Thérien, D., and Vollmer, H. 1998. Nondeterministic NC1 computation. J. Comput. Syst. Sci. 57, 200--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Chandra, A. K., Fortune, S., and Lipton, R. J. 1985. Unbounded fan-in circuits and associative functions. J. Comput. Syst. Sci. 30, 2, 222--234.Google ScholarGoogle ScholarCross RefCross Ref
  20. Cook, S. A. 1985. A taxonomy of problems with fast parallel algorithms. Inf. Cont. 64, 1-3, 2--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Cook, S. A. 1988. Short propositional formulas represent nondeterministic computations. Inf. Process. Lett. 26, 5, 269--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Etessami, K. 1997. Counting quantifiers, successor relations, and logarithmic space. J. Comput. Syst. Sci. 54, 3 (Jun), 400--411. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Feige, U., and Kilian, J. 1998. Zero knowledge and the chromatic number. J. Comput. Syst. Sci. 57, 2, 187--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Fortnow, L. 2000. Time-space tradeoffs for satisfiability. J. Comput. Syst. Sci. 60, 336--353. Google ScholarGoogle ScholarCross RefCross Ref
  25. Furst, M., Saxe, J. B., and Sipser, M. 1984. Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17, 13--27.Google ScholarGoogle ScholarCross RefCross Ref
  26. Goldwasser, S., Gutfreund, D., Healy, A., Kaufman, T., and Rothblum, G. N. 2007. Verifying and decoding in constant depth. In Proceedings of the ACM Symposium on Theory of Computing (STOC). ACM, New York, 440--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Håstad, J. 1988. Computational Limitations of Small Depth Circuits. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Håstad, J. 1998. The shrinkage exponent of de Morgan formulas is 2. SIAM J. Comput. 27, 1, 48--64. Google ScholarGoogle ScholarCross RefCross Ref
  29. Håstad, J. 1999. Clique is hard to approximate within n1-&epsis;. Acta Math. 182, 105--142.Google ScholarGoogle ScholarCross RefCross Ref
  30. Hansen, K. A., and Koucký, M. 2010. A new characterization of ACC0 and probabilistic CC0. Computat. Complex. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Hesse, W., Allender, E., and Barrington, D. A. M. 2002. Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65, 695--716. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Impagliazzo, R., Paturi, R., and Saks, M. E. 1997. Size-depth tradeoffs for threshold circuits. SIAM J. Comput. 26, 693--707. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Khot, S. 2001. Improved inaproximability results for maxclique, chromatic number and approximate graph coloring. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos, CA, 600--609. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Khot, S., and Ponnuswami, A. K. 2006. Better inapproximability results for maxclique, chromatic number and min-3lin-deletion. In Proceedings of the 33rd International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 4051. Springer-Verlag, Berlin, Germany, 226--237. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Koucký, M. 2009. Circuit complexity of regular languages. Theory Comput. Syst. 45, 4, 865--879. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Linial, N., Mansour, Y., and Nisan, N. 1993. Constant depth circuits, Fourier transform, and learnability. J. ACM 40, 3, 607--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Naor, M., and Reingold, O. 2004. Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51, 2, 231--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Neciporuk, E. I. 1966. On a Boolean function. Doklady of the Academy of Sciences of the USSR 169, 4, 765--766. (English translation in Soviet Mathematics Doklady 7:4, pages 999-1000.)Google ScholarGoogle Scholar
  39. Razborov, A., and Rudich, S. 1997. Natural proofs. J. Comput. Syst. Sci. 55, 24--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Razborov, A. A. 1987. Lower bounds on the size of bounded depth networks over a complete basis with logical addition. Mathematicheskie Zametki 41, 598--607. (English translation in Mathematical Notes of the Academy of Sciences of the USSR 41:333-338, 1987.)Google ScholarGoogle Scholar
  41. Razborov, A. A. 1991. Lower bounds for deterministic and nondeterministic branching programs. In Proceedings of the Symposium on Foundations of Computation Theory. Lecture Notes in Computer Science, vol. 529. Springer-Verlag, Berlin, Germany, 47--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Razborov, A. A. 1995a. Bounded arithmetic and lower bounds. In Feasible Mathematics II. Progress in Computer Science and Applied Logic, vol. 13. Birkhäuser, 344--386.Google ScholarGoogle Scholar
  43. Razborov, A. A. 1995b. Unprovability of lower bounds on circuit size in certain fragments of bounded arithmetic. Izvestiya Math. 59, 205--227.Google ScholarGoogle ScholarCross RefCross Ref
  44. Rossman, B. 2008. On the constant-depth complexity of k-clique. In Proceedings of the ACM Symposium on Theory of Computing (STOC). ACM, New York, 721--730. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Ruzzo, W. L. 1981. On uniform circuit complexity. J. Comput. Syst. Sci. 22, 3, 365--383.Google ScholarGoogle ScholarCross RefCross Ref
  46. Smolensky, R. 1987. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of the ACM Symposium on Theory of Computing (STOC). ACM, New York, 77--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Srinivasan, A. 2003. On the approximability of clique and related maximization problems. J. Comput. Syst. Sci. 67, 3, 633--651. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. van Melkebeek, D. 2004. Time-space lower bounds for NP-complete problems. In Current Trends Theoret. Computer Science, World Scientific Press, 265--291.Google ScholarGoogle Scholar
  49. van Melkebeek, D. 2007. A survey of lower bounds for satisfiability and related problems. Found. Trends in Theoretical Comput. Sci. 2, 197--303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Vollmer, H. 1999. Introduction to Circuit Complexity. Springer-Verlag, Berlin, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wilson, C. 1990. Decomposability of NC and AC. SIAM J. Comput. 19, 384--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Yao, A. C. C. 1985. Separating the polynomial-time hierarchy by oracles. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society Press, Los Alamitos, CA, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Zuckerman, D. 2007. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3, 1, 103--128.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Amplifying lower bounds by means of self-reducibility

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 57, Issue 3
        March 2010
        225 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/1706591
        Issue’s Table of Contents

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 29 March 2010
        • Revised: 1 October 2009
        • Accepted: 1 October 2009
        • Received: 1 August 2008
        Published in jacm Volume 57, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader