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Abstract
A considerable amount of research, especially within the OO and
AOSD communities, has focused on understanding the potential
and limitations of various composition techniques. This has led to
a large amount of proposals for alternative composition techniques,
including many variations of message dispatch, inheritance, and as-
pect mechanisms. This paper makes the case that there is no single
perfect composition technique that suits every situation, since dif-
ferent techniques incur different trade-offs. The proper composition
technique to use depends on the particular design problem and its
requirements (e.g. w.r.t. adaptability, reusability, understandability,
robustness, etc. of the various elements of the design). However,
most programming languages limit the available composition tech-
niques to a very few. To address this, we propose a novel composi-
tion model. The model provides dedicated abstractions that can be
used to express a wide variation of object composition techniques
(“composition operators”). Examples include various forms of in-
heritance, delegation, and aspects. The proposed model unifies ob-
jects (with encapsulated state and a message interface) and compo-
sition operators; composition operators are specified as first-class
citizens. Multiple composition operators can be combined within
the same application, and composition operators can even be used
to compose new composition operators from existing ones. This
opens new possibilities for developing domain-specific composi-
tion operators, taxonomies of composition operators, and for reuse
and refinement of composition operators. To validate and experi-
ment with the proposed model, we have designed and implemented
a simple language, that we also use in this paper to show concrete
examples.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—Modules and Interfaces,
Object-oriented design methods; D.2.3 [Software Engineering]:
Coding Tools and Techniques—Object-oriented programming;
D.3.2 [Programming Languages]: Language Classifications—
Object-oriented languages, Extensible languages
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1. Introduction
The history of programming languages shows a continuous search
for new—presumably better—composition techniques. The typical
aim of such techniques is to find better ways for structuring increas-
ingly complex software systems into modules that can be developed
and reused independently.

Composition operators are language mechanisms that let pro-
grammers compose behavior and/or data, defined as separate en-
tities, by means of a composition specification. An example of a
composition operator is function application (viz., calling a func-
tion or method). This operator allows the invocation of functional-
ity that is defined separately (as a function definition), by means
of a call statement (fulfilling the role of composition specifica-
tion). Other examples of composition operators include inheritance
(in many different styles), delegation, pointcut-advice mechanisms,
composition filters, mixins, traits, etc.

Most languages adopt a fixed set of composition operators, typ-
ically with explicit notations and predefined semantics. In case a
language does not provide a composition operator with the de-
sired compositional behavior, programmers may need to write
workarounds in their applications; by adding glue code, or by using
macros, libraries, frameworks or language extensions. However,
typically, such workarounds are not integrated with the language,
and the resulting abstractions suffer from lack of comprehensibility,
adaptability and reusability.

The availability of only a limited set of composition operators
causes additional issues; most existing languages have a bias to-
wards one kind of decomposition of software systems1, which also
imposes constraints on the viability of particular evolution scenar-
ios, or in other words, the extensibility of software [13]. Thus, each
composition operator (and hence, language) has a bias that makes
some types of evolution scenarios easier to accommodate, or less
error-prone, than others. Such trade-offs are inherent to the choice
of particular composition operators – there exists no single com-
position operator that is able to address all kinds of evolution sce-
narios equally well, while still providing meaningful higher-level
abstractions.

To work towards addressing the issues identified above, we
present a composition infrastructure that (a) supports the definition
of a range of composition mechanisms, (b) allows composition
mechanisms to be expressed in terms of first-class entities, enabling
the construction of new composition mechanisms from existing
ones, (c) supports the use of multiple composition mechanisms
within the same program, while (d) supporting a variety of aspect-
as well as object-based composition mechanisms.

Our approach has been implemented and is presented in this pa-
per in terms of a small language, called “Co-op”. In this language,

1 This is similar to the “tyranny of the dominant decomposition” [39].



composition operators can be constructed using several “primi-
tive” elements, such as selectors, bindings, actions and constraints,
which can be used to define composition operators based on im-
plicit invocation. These primitive elements are expressed in terms
of first-class elements (objects), so that they can be freely com-
posed. We use these primitive elements to express several compo-
sition mechanisms, including different styles of inheritance, e.g. as
found in Smalltalk [17] or Beta [28], as well as aspects.

This paper is structured as follows: the next section discusses
the issue of trade-offs between composition operators in more de-
tail. Section 3 discusses our approach, presenting our composition
model. In section 4, we show example applications of our model,
defining several composition operators and applying those to an
example case. The next section discusses how our composition op-
erators can be used to create new composition operators by com-
posing existing ones. Section 6 discusses several important design
decisions, and is followed by a discussion of related work, in sec-
tion 7, and an evaluation and conclusion, in section 8.

2. Motivation
2.1 Background
In this paper, we argue that there is no single “best” composition
technique; instead, different composition techniques may be the
most suitable in different application contexts. Each composition
technique offers a particular trade-off between various character-
istics, such as flexibility, ease of understanding, ability to share
behavior or state, robustness against programmer mistakes, and-
soforth2. In addition, different application contexts require differ-
ent characteristics from the composition technique to be employed.
As a result, software engineers require multiple composition tech-
niques in their toolbox.

This is by itself not a new observation, and several approaches
have been proposed that aim to address this issue at least partially
(Section 7 discusses related work in detail):

• offer a variety of languages: for example one of the philoso-
phies of the .NET platform is to offer software engineers a
choice of programming languages within the same platform, in-
cluding interoperability of objects among languages. The latter
is achieved by committing to a standard object model including
(fixed) inheritance semantics.

• domain-specific languages: is a variation to the previous item,
but emphasizes that different application domains require tai-
lored abstractions and ways to express these abstractions.
Accordingly, domain-specific abstractions may also require
domain-specific composition techniques.

• meta-object protocols: A metaobject protocol (MOP) is an in-
terpreter of the semantics of a program that is open and exten-
sible [40]. A specific MOP implementation offers a framework
that fixes certain core parts of the language, and allows for ex-
tension and refinement of other parts, essentially by refining
the implementation of the interpreter. This allows a range of -
related- interpreters to be constructed using the MOP. The ease
and modularity of doing these extensions depends completely
on the design of the MOP.

In this section, we will introduce a simple example that il-
lustrates why multiple, different, composition techniques may be
needed within a single application. Figure 1 provides an overview
of the example, which simulates a simple office or workflow en-
vironment. It contains an is-a hierarchy of several person objects;

2 We consider “best of breed” composition techniques only, and further
ignore that perhaps for particular techniques, one composition technique
only present improvements over another.

at the most general level an object type Person is defined, which
offers basic functionality generic to persons. A more specific ob-
ject type Employee defines that all employees have a (unique)
ID, which must conform to certain rules checked by method
validID(). Employees also have a method performTask() that
enacts specific tasks.

Types Secretary and Staff are both special cases of Employee,
where Secretary manages an encapsulated agenda, offering sev-
eral methods for scheduling appointments. Each secretary ob-
ject has its own instance of the agenda. Staff objects have a
jobDescription, which is a list of tasks they are allowed to
perform (by the performTask() method). All these objects also
provide an asString() method that returns a string representation
of the object. Finally, LogOfficeTasks monitors all tasks that are
performed by all employees in the system, this can be used to check
progress, to enforce certain workflows, or to implement billing.

getID()
setID()
performTask()
validID()
asString()

id
Employee

getName()
setName()
eat()
sleep()
asString()

name
Person

getAppointment()
free()
schedule()
showAgenda()
asString()

agenda
Secretary

advises

delegates_to addJobDescription()
getJobDescription()
performTask()
asString()

jobDescription
Staff

logTask()

<<Aspect>>
LogOfficeTasks

advises

advises

Figure 1. Example application that illustrates various composition
techniques.

In the context of this simple application, we will discuss a
number of alternative compositions to apply, some of the trade-offs
that are involved:

2.2 Inheritance
The example application involves a number of is-a relations;
Employee is-a Person, Secretary is-a Employee and Staff
is-a Employee. These is-a relations can be represented by the well-
known object-oriented inheritance composition operator. There are
many different proposals for inheritance semantics (see e.g. the
overview in [37]); here we will discuss two alternatives; Smalltalk-
style inheritance and Beta-style inheritance.

In languages that support an inheritance mechanism similar to
Smalltalk [17] or Java, subclasses can override methods defined
in their superclass, and decide whether the original behavior (in
the superclass) is invoked, through a message call to “super”. The
advantage of this type of inheritance is that it supports unantici-
pated extensions; a class need not be prepared for possible exten-
sions in the future. A disadvantage is that it is impossible to restrict
subclasses from completely redefining existing behavior as imple-
mented in the superclass. This makes it very easy to define sub-
classes that (accidentally) break properties that where (previously)
guaranteed by their superclass.

In the example, Employee defines method validID(): this
method determines whether an ID is valid, according to certain



wellformedness rules. A subclass, such as Staff, can override
this method and thereby refine the rules, e.g. because the ID of all
Staff persons must have a certain format. However, this may also,
inadvertently, break the rules defined in the superclass; and there is
nothing that the original implementation of the method can do to
prevent this3.

In the Beta language [28], superclasses have control over the
execution of methods that are overridden in subclasses. This is
achieved by inserting calls to inner in those locations where a
method may be extended by additional behavior, as (optionally)
supplied by a subclass. For example, the implementation of the
isValid() method in Employee could make an isValid() call
to inner, with the certainty that its local checks are still always
executed. The advantage is that a superclass can more easily guar-
antee certain properties (e.g., invariants), as it has control over the
invocation of any sub-behavior. On the other hand, this approach
makes it impossible to completely replace (“override”) existing be-
havior by means of subclassing, thus severely limiting the potential
directions in which a class can evolve. In addition, the desired ex-
tension points must be predicted correctly.

This shows that both Smalltalk-style and Beta-style inheritance
may be the best choice in certain situations, but neither is the best
in all possible situations; the preferred solution is that a designer
can deliberately choose which style of inheritance to use in which
part of a design.

2.3 Delegation
In our example, staff members have a shared agenda, managed by
an instance of Secretary; so staff instances share/reuse the state
(instance variables) of Secretary, but also the behavior (methods)
for accessing the agenda; methods getAppointment(), free(),
schedule(), and showAgenda() must be available on the inter-
face of Staff as well. In other words, instances of Staff “dele-
gate” part of the functionality to a Secretary instance.

We will consider three alternative composition techniques to
compose the behavior of Secretary and Staff: inheritance, mes-
sage passing and delegation. First, implementing this behavior us-
ing inheritance (where e.g. Staff would inherit from Secretary)
is inappropriate, since this would cause each instance of Staff
to have a copy of the shared agenda. Implementing this compo-
sition by a message passing relationship between Staff instances
and a Secretary instance (to which they must keep a reference
in that case) suffers from the “self problem” [27]: For example
the schedule() method of Secretary needs to add information
about the employee with whom the appointment is made, or rather,
on whose behalf the method is executed. In the case of a message
send, the “self” or “this” object context changes to the object to
which the call is routed, that is, the Secretary instance; it is im-
possible in this case to refer to the original receiver of the message.
Although it is possible to work around this by passing the original
interface object as an extra call parameter, this is an unsatisfac-
tory solution. For example, this workaround necessitates changes
to the interface of affected methods, which may be undesirable, for
instance, if this changes the interface of a class that is part of an
existing library, or if this change of interface has a cascading effect
within the inheritance tree.

In contrast, in languages that support explicit delegation, the
“self” context does not change when delegating an operation, and
still refers to the original receiver of the request; in this case an
instance of Staff.

Again we see that composition through inheritance is better
in some situations (e.g. when reusing and refining behavior, but

3 Although e.g. Java has an additional keyword final that completely
forbids overriding of a specific method.

not state), and composition through delegation in other situations
(when reusing both behavior and state).

2.4 Aspects
As a third example of the trade-offs between composition opera-
tors, we take a look at the monitoring behavior defined for our ex-
ample. Monitoring is a crosscutting behavior; it is a single concern
that affects a number of places in the code; in this case all the lo-
cations where employees perform tasks. This can be implemented
by inserting monitoring code in all relevant locations, perhaps just
consisting of a single library call, including some code that passes
the relevant context. Aspect-oriented composition is an alternative
implementation technique, which has the advantage that it mod-
ularizes crosscutting concerns, in this case the monitoring code,
which makes it much easier to maintain the monitoring behavior,
understand which locations in the system are monitored, and add
or remove new monitoring locations. The latter may even occur
implicitly when the base code evolves.

In our example, monitoring of tasks can easily be captured by
an aspect, that acts upon the execution of the performTask()
method, and can observe the context of the join point, including
the task that is passed as an argument. As a result, monitoring will
be implemented in a separate module, where all changes to the
monitoring process can be localized.

Possible disadvantages of using aspects are that they are applied
implicitly; when observing the source code of a single module, it
may not be obvious which aspects are applied, in which order, and
how they interact. Also, if the crosscutting behavior is different at
each join point (for example if the message to be logged at each join
point is really semantically different, and these differences cannot
be factored out in terms of the context), then it may not make much
sense to modularize that into a single aspect.

2.5 Contributions of this paper
Clearly, the examples we presented in this section are just a small
subset of all possible design considerations, trade-offs and alterna-
tive composition that can be made in the design of software sys-
tems. The key message we want to convey is that by committing to
a single, or a fixed set of, composition technique(s), it will be im-
possible to fulfill all (quality) requirements in many systems. The
costs of such deficiencies may vary from close to nothing in sim-
ple, non-critical applications, to substantial for critical applications
where for example modularization, robustness or adaptability are
important requirements.

This paper makes the following contributions, therewith ad-
dressing this problem:

1. It presents a novel model that supports composition operators as
user-defined, modular and reusable first-class abstractions. We
are not aware of any language or MOP that has a similar model
(design) and characteristics;

2. In particular, our model has strong support for composition of
composition operators; either the combination of multiple, dif-
ferent operators in a single application, or the ability to con-
struct new composition operators from existing ones, through
the application of other composition operators.

3. Our proposed model unifies and supports both object-oriented
and aspect-oriented composition techniques.

4. It illustrates the feasibility of the model by presenting a simple,
experimental, object-based language as an instantiation.

3. Composition Model
In this section, we propose our core composition model. This model
can be seen as a generalization of prior work, related to the mod-



eling and composition of (domain-specific) aspect languages [22].
In this paper, we employ a very similar set of concepts to model di-
verse composition operators. These composition operators can then
be applied to any kind of object-based model. In this paper we will
demonstrate this through an object-based programming language
called Co-op, which we designed for the purpose of experimenting
with a language that does not supply built-in composition operators
of its own. We will (briefly) explain and use Co-op in the following
section to illustrate the definition and usage of composition opera-
tors in detail4. We consider the general model of composition oper-
ators we propose and its capabilities as a main contribution of this
paper, rather than the Co-op language itself, which serves mainly
as a vehicle for experimentation and illustration of the composition
operators model.

The core composition model we propose consists of the follow-
ing elements:

• Events, which may be published (generated) during the execu-
tion of a program,

• Event Selectors, queries that can be matched against published
events based on properties of the event, as well as other (reflec-
tive) information about the program that can be reached through
the context of an event,

• Action Selectors, which select an operation to be invoked, as
well as the intended target object,

• Bindings, which bind event selectors to action selectors, and in
addition specify the binding of values between the “incoming”
event and the invoked behavior, or the “outgoing” event (in
effect, this achieves sharing of values between contexts),

• Constraints, which can be used to restrict or determine the
ordering of the execution in the case that multiple selectors (and
hence, bindings) match the same event.
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Figure 2. An overview of the event dispatching process

These concepts can be used together to define how events are
eventually bound to concrete operations. Figure 2 schematically
illustrates this. We briefly list the flow of events in a number of
steps:

• On the left hand side we see that execution of operations may
lead to publishing of an event.

4 We believe that showing examples of this model as a pure MOP would
require showing a lot of MOP code, that would be harder to understand.

• It is determined which of all (active) event selectors match with
the event. This potentially enables a set of bindings that refer to
those selectors.

• Applying the constraints that have been defined between the
various bindings may further reduce the applicable bindings
(e.g. because bindings may exclude each other), and determines
a (partial) ordering among the bindings.

• The resulting set of bindings is evaluated; this consists of bind-
ing of values from the received event to the resulting event, and
the evaluation of the associated action selectors.

• This process may repeat itself multiple times (i.e. there can
be multiple dispatch stages), as long as there are matching
bindings.

• Actual execution of (base-level) operations will occur when a
“default binding” is executed; this is discussed below.

We have defined a denotational semantics of this model as ap-
plied to the Co-op language, including a precise definition of the
complete selector evaluation process that we informally described
above. However, there is insufficient space to include it in this pa-
per. For those interested, we refer to [21, Appendix A].

We apply this model in the context of a simple object-based
programming language, which defines modules that may encap-
sulate instance variables and operations. Modules are essentially
classes, but have no built-in composition mechanisms such as in-
heritance. Operations may declare parameters and local variables.
Their implementation specification consists of a list of statements,
of which 3 kinds exist: assignments, event generations, and returns.
Apart from built-in modules such as Boolean, String, List, and
Dictionary, the language also supports closures, so that common
control flow mechanisms can be implemented without extending
the syntax of the language (cf. Smalltalk).

Listing 1 shows the definition of module Person, as discussed
in section 2. We expect that, for anyone familiar with Smalltalk or
Java, the syntax of this code will be understandable. For example,
the statement on line 13 generates an event (or message) that spec-
ifies variable p as its intended target, setName as a selector, and a
string-literal parameter “John Smith”. An important difference, as
compared to Smalltalk, is that in the absence of composition opera-
tors, such event generations do not have any observable effect, as of
yet. The effect of the expression Person new, on line 12, is to cre-
ate a new instance of module Person, and to invoke the operation
init of that module.

1 module Person{
2 var name;
3
4 init { name = ""; }
5 getName { return name; }
6 setName:newName { name = newName; }
7 asString { return "Person with name: " cat: name; }
8 }
9

10 module Main {
11 main {
12 var p; p = Person new;
13 p setName: "John Smith";
14 Console writeln: (p asString);
15 }
16 }

Listing 1. module Person and usage example in Co-op

Specifically, an event has the following properties, which may
be used by event selectors as matching criteria:

sender: the object context from which the event originates.

target: the intended receiver object of the event, which is explicitly
specified (but can be modified by composition operators).



selector: a selector indicates the name of the operation intended
to be invoked (which can also be modified by composition
operators).

local type: the type (module) from which the event originates; i.e.
the module that defines the operation that generated the event.

lookup type: this indicates the module in which to look for the
operation implementation (defaulting to the type of the target
object, but this too can be changed by composition operators).

call annotations: these annotate calls with additional semantics,
which can be interpreted by composition operators, and may
be used to indicate that an event should be interpreted in an
irregular way. For example, in our model, composition oper-
ator features such as “super” or “inner” calls (in respectively
Smalltalk-style and Beta-style inheritance) are essentially mod-
eled as “this”-calls with an annotation that instructs the inheri-
tance operator to perform operation lookups differently.

To make the language of practical use, we define a “default” com-
position operator in terms of the composition model concepts dis-
cussed above. This composition operator defines an event selector
that matches any event within the program, regardless of its prop-
erties. Its action selector selects the operation (if it exists) with the
message selector specified by the event (e.g. setName), in the mod-
ule corresponding to the lookupType of the intended target object.
In the event specified on line 13 (Listing 1), variable p is the in-
tended target, which has the type Person. The event selector is
bound to the action selector by means of a binding that in addition
defines the pseudo-variable this as equal to the target object of
the event. This pseudo-variable is then available within the called
context, and can be accessed as a normal variable.

It is important to note that constraints can be applied to the de-
fault operator, just like they can be applied to any other operators.
The default composition operator is therefore not a “fixed” mecha-
nism that cannot be overridden.

In the case that no other operator has modified the event prop-
erties or imposed constraints, the default operator thus has the—
hopefully unsurprising—effect of dispatching the “call” to the indi-
cated target object, invoking the operation indicated by the message
selector.

In the following sections, we define several additional composi-
tion operators, and show how these can be applied to the example
introduced in section 2. Co-op represents the concepts used to con-
struct composition operators as first-class objects within the pro-
gram, i.e., they can be used as parameters, returned as values of op-
erations, assigned to (instance) variables etc., like any other object.
This also means that composition operators can be composed with
other composition operators, and thus reused and refined. Thus,
composition operators are not built into the language, but can be ex-
pressed and composed using primitives supported by the language.
Since there is insufficient space in this paper to explain the Co-op
language in detail, we refer to [21] for an extended discussion of
the language.

Figure 3 shows the composition infrastructure schematically.
In the middle left, an object (a module instance) publishes an
event. This event is evaluated by the active set of selector bindings.
These bindings can be defined using Co-op modules. Finally, the
evaluation of the event typically leads to the invocation of one
(or more) operations, on an instance of the target object. How the
evaluation works is discussed in more detail in the next subsection.

4. Definition and usage of composition operators
In this section, we illustrate the definition of new composition
operators and the combination of these within a single application
by following the example from section 2.
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Figure 3. Overview: Composition in Co-op

4.1 Inheritance
As described in section 2, it often makes sense to model “is-a” re-
lationships using inheritance. In this section, we explain the imple-
mentation of a single-inheritance mechanism. We have additionally
implemented several other variants of inheritance (documented in
[21], and available on the website [2]), including multiple inheri-
tance and Beta-style inheritance [28]. There, also support for “su-
per” calls is included, which we do not show here.

We define the intended behavior of inheritance as follows: given
an inheritance relation where module X extends module Y, events
of which the lookup type is X should in principle lead to execution
of the indicated operation within module X. (This corresponds to
the behavior implemented by the default call binding.) However,
if (and only if) module X does not define an operation with the
message selector as indicated by the event, the event is instead re-
evaluated while its lookup type is changed to Y, thus “forwarding”
the message to the “parent” type. Listing 2 shows the implementa-
tion of such an inheritance mechanism using Co-op.

To implement the above in terms of the concepts used to con-
struct composition operators, listing 2 defines an (event) selector,
callsToChild, that matches when the lookup type of an event
matches the child type of an inheritance relation (lines 5–6). Note
that the (event) selector is defined as a normal object; it is initialized
with a closure (the part between brackets, line 6), which is param-
eterized by an event (the closure parameter is notated as |evt|,
and follows the opening bracket of the closure definition). Once
registered with the Co-op interpreter, the selector will be evaluated
against every event that occurs within the program. Similarly, lines
7–8 define an (action) selector, sendToParent, that yields a refer-
ence to the selected operation in the parent class. Lines 9–11 bind
these together, and also define the value the pseudo-variable “this”
will have in case the binding matches and its selected operation is
invoked.

This design causes two different “bindings” to match the event:
the default binding, which matches all events, as well as the
just described inheritanceBinding. Since this would lead to the
execution of two operations when both the parent and child type
implement an operation with the specified message selector, we
add a constraint between the default binding and the inheritance
binding, on line 13–14 (in our implementation, the default binding



is globally accessible). The constraint specifies that if the default
binding can successfully invoke the operation (which is the case
only if the child type defines an operation with the name specified
as the message selector of the event), we want to skip the invocation
of the binding to the parent type. This way, operation definitions
in the child type effectively override those in the parent type,
while operations not defined in the child type are forwarded to
the parent type, as intended by the inheritance mechanism.

1 module SingleInheritance { ...
2 inherits:child from:parent {
3 var inheritanceBinding, callsToChild, sendToSuper;
4
5 callsToChild = Selector new:
6 [|evt| (evt lookupType) isEqual: child];
7 sendToParent = Selector new:
8 [|evt| OperationRef new:parent withSelector:(evt selector)];
9 inheritanceBinding = Binding new: callsToChild

10 toSelector: sendToParent withContext:
11 [|evt| (Dictionary new) at: "this" put: (evt target)];
12
13 (SkipConstraint new: defaultCallBinding
14 skip:inheritanceBinding) activate;
15 inheritanceBinding activate;
16 }
17 }

Listing 2. Defining a single-inheritance operator

On lines 14 and 15, both the constraint and the binding are
“activated”, that is, registered with the Co-op interpreter. From
this point on, the binding and constraint are “active” within the
program, and will react to events.

Listing 3 shows an example that uses the inheritance operator,
reflecting the inheritance structure shown in Figure 1. The first 4
lines define the inheritance structure. Line 6 creates an instance of
Employee. Line 7 generates an event with selector performTask,
with the just created Employee object as its target. Since the mod-
ule Employee indeed defines an operation performTask, the de-
fault binding matches and is able to successfully invoke this opera-
tion. Since the constraint between default- and inheritance binding
prevents the inheritance binding from carrying out its job in case
the default binding already handled it, it does not further attempt to
invoke performTask on module Person.

1 inh = SingleInheritance new;
2 inh inherits: "Employee" from: "Person";
3 inh inherits: "Staff" from: "Employee";
4 inh inherits: "Secretary" from: "Employee";
5
6 e = Employee new;
7 e performTask: "write spec";
8 e setName: "John Smith";

Listing 3. An example using single inheritance

On line 8 however, an event with selector setName is generated.
Figure 4 explains the control flow in this case.

First, all event selectors are evaluated. Both the event selectors
belonging to the inheritance binding and the default binding match
this particular event. However, the default binding cannot success-
fully invoke the operation “setName” within the current lookup
type (Employee), since the module does not contain such an opera-
tion. Thus, since the default binding is unsuccessful, the inheritance
action selector is evaluated. This selector “rewrites” the lookup-
Type of the event to Person, and then re-attempts to dispatch the
event, again matching it to all selectors, etc. Because of this “multi-
stage” dispatch, it is possible to correctly deal with multiple levels
of inheritance. After the event has been rewritten, the default bind-
ing is able to invoke the operation setName on the current lookup-
Type (Person). The default binding thus implements the final dis-
patch stage of the evaluation.
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Figure 4. Example of message dispatch; single inheritance

4.2 Delegation
In this section, we implement a delegation mechanism. The inten-
tion, as discussed in section 2, is to delegate “calls” to objects of
type Staff to their respective Secretary. In practice, this means
that calls to Staff will be delegated to a connected object of type
Secretary, in case the module Staff does not implement the in-
voked operation itself. In addition however (and this part cannot
be implemented in languages that do not explicitly support delega-
tion), even when the call is forwarded, the pseudo-variable “this”
keeps referring to the original Staff-object, so that any “this”-calls
within Secretary will be dispatched to Staff first, and are again
only handled by Secretary if module Staff does not implement
that operation itself.

1 staff = Staff new; staff setName: "John";
2 secr = Secretary new;
3 Delegation newFrom: staff to:secr;
4 staff schedule: "today" description: "meeting"; //handled by

secretary
5
6 module Secretary {
7 var agenda; ...
8
9 schedule:time description:appointment {

10 Console writeln: ("Appointment with " cat: (this getName));
11 agenda at: time put: appointment;
12 ...
13 }

Listing 4. An example using delegation

Listing 4 shows an example. Lines 1 and 2 create objects
of type Staff and Secretary. Line 3 establishes a delegation-
relation between them—we discuss the implementation of module
Delegation below. Now, on line 4, we make a call to operation
schedule, even though module Staff does not implement such
an operation (see Figure 1). Because of the delegation mechanism
however, the call is forwarded to the Secretary object, of which
lines 6–13 show a part of the implementation. Within operation
schedule, references to variable “this” still refer to the original
staff object. Thus, this example prints “Making an appointment
for John”. Without delegation, the “this” object would refer to the
secretary, and thus print the name of the secretary instead.

So far, to implement inheritance, it was only required to rewrite
the lookup type of an event. To implement delegation, two steps
are necessary: (1) we redirect invocations to particular objects to a
completely different object altogether, and (2) even so, we want the
pseudo-variable “this” to still refer to the original object.

1 module Delegation {
2 var delegationBinding;
3
4 initFrom:from to:to {
5 var overrideConstraint, callsToFrom, sendToForward;



6
7 callsToFrom = Selector new:
8 [ |event| ((event target) isSameObject: from) and:
9 ((event lookupType) isEqual: (from type))];

10 sendToForward = Selector new:
11 [ |event| OperationRef newInModule: (to type)
12 withSelector: (event selector)
13 withAnnotation: (event callAnnotation) withTarget: to];
14 delegationBinding = Binding newFromSelector: callsToFrom
15 toSelector: sendToForward
16 withContext: [(Dictionary new) at: "this" put: from];
17
18 overrideConstraint = SkipConstraint new: defaultCallBinding

skip: delegationBinding;
19 delegationBinding activate;
20 overrideConstraint activate;
21 }
22
23 getBinding { return delegationBinding; }
24 }

Listing 5. Definition of a delegation operator in Co-op

Listing 5 shows how this can be implemented in Co-op. The
event selector on line 7–9 matches events of which the intended
target object equals from, which is a parameter of the delegation
instance (e.g., in listing 4, variable staff is used as a value for this
parameter). The action selector on line 10–13 rewrites the event,
such that the lookup type is set to the type of parameter to, the
selector is unchanged, the call annotation (if any) is unchanged,
and the target object is changed to the value of parameter to. When
creating the binding, on line 14–16, we instruct the binding to set
the pseudo-variable this to the original target object from, rather
than having it set to the (now modified!) event target. Finally, line
18 specifies a constraint, such that calls are only delegated when
the original receiver object does not implement a desired behavior
(such as agenda functionality) itself.

4.3 Aspects
In addition to common object-oriented composition operators, the
query-based approach to matching events can also be employed
to implement aspects. Listing 6 shows the definition of a general-
purpose pointcut-advice mechanism, that supports before and af-
ter advice (similar to AspectJ). Instances of this aspect module are
parameterized by an advice type (before or after), a module- and
operation-pattern to match (only very simple “patterns” are sup-
ported: “*” matches everything, otherwise a concrete module or
operation-name is expected), the advice module and operation to
be executed, and an object on which the advice should be invoked,
so that advices can also share state (“aspect state”).

Pattern evaluation is implemented on lines 7–13; if an event
matches the specified patterns, both sub-“pointcuts” will match.
In line 15–16, these definitions are combined into a single event
selector (cf. pointcut). The advice to be invoked is specified on line
17–22. Lines 24–25 define a constraint that orders the execution
of the aspect relative to the default binding, executing the aspect
either before or after the operation invoked by the default binding.
Note that in this case, the execution of the original invocation is not
skipped if the execution of the aspect is successful, but rather, the
invocations are only ordered with respect to each other.

1 module AspectJLikePointcutAdvice {
2 init:advType matchClass:matchClass matchSel:matchSel
3 aspectInstance:aspectInstance adviceSel:adviceSel {
4 var binding, constraint, pointcut, advice;
5 var classMatchExpr, selMatchExpr;
6
7 classMatchExpr = [|event| (matchClass isEqual: "*")
8 ifTrue: [true]
9 ifFalse: [matchClass isEqual: (event lookupType)]];

10
11 selMatchExpr = [|event| (matchSel isEqual: "*")
12 ifTrue: [true]

13 ifFalse: [matchSel isEqual: (event selector)]];
14
15 pointcut= Selector new: [|evt| (classMatchExpr execute: evt)
16 and: (selMatchExpr execute: evt)];
17 advice = Selector new: [OperationRef newInModule:
18 (aspectInstance type) withSelector: adviceSel
19 withAnnotation: "" withInstance: aspectInstance];
20 binding = Binding newFromSelector: pointcut
21 toSelector: advice withContext:
22 [|evt|(Dictionary new) at: "this" put: (evt target)];
23
24 (advType isEqual: "before") ifTrue:[constraint =

PreConstraint new: binding before: defaultCallBinding];
25 (advType isEqual: "after") ifTrue: [constraint =

PreConstraint new: defaultCallBinding before: binding];
26 constraint activate;
27 binding activate;
28 }
29 }

Listing 6. Definition of a pointcut-advice mechanism in Co-op

Listing 7 shows an example using the above composition op-
erator. When initialized, LogOfficeTasks creates an instance of
the pointcut-advice operator (line 5–7) that before the execution
of operation performTask() in any module in the system, in-
vokes the operation logTask in module LogOfficeTasks, using
the LogOfficeTasks instance itself (this) as the advice context.
From that point on, whenever the operation performTask() is in-
voked, the advice in logTask() is invoked before the actual execu-
tion of performTask(). In this example, the advice keeps track of
progress (line 14), thus demonstrating the sharing of state between
advice executions.

1 module LogOfficeTasks {
2 var progress;
3 init {
4 progress = "";
5 AspectJLikePointcutAdvice new: "before"
6 classMatch: (this classToLog) opMatch: (this optoLog)
7 aspectInstance: this advice: "logTask";
8 }
9 classToLog { return "*"; }

10 opToLog { return "performTask"; }
11
12 logTask {
13 Console writeln: "Log: performing task, current progress: ";
14 progress = progress cat: "+";
15 Console writeln: progress;
16 }
17 }

Listing 7. An example using the pointcut-advice mechanism

In addition, note that the task-logging aspect can be extended
just like other modules, for example to override the operations
classToLog and operationToLog, which (in a sense) define the
“pointcuts” of the logging aspect. This way, it is possible to com-
bine the use of several composition operators.

5. Composition of Composition Operators
Our composition model enables “composition” at different levels,
which we distinguish here for the sake of clarity:

• In section 4, we constructed new composition operators that
support expressing various object-oriented as well as aspect-
oriented compositions.

• Multiple kinds of composition operators can be used (mixed)
in the same program. For example, the delegation operator was
demonstrated in an example that also involves an inheritance
operator.

• Since the concepts used to define composition operators are
modeled as first-class entities (objects) within the program,
composition operators can also themselves be composed of (or,



can reuse parts of) other composition operators. We exemplify
this below.

To illustrate the relations between regular modules and composition
operators, figure 5 shows the composition relations in the example
that we have demonstrated in this paper.

LogOfficeTasks

AspectJPointcut
Advice

Employee

Person

StaffSecretary

Delegation

PointcutAdvice

comp. relation between A and B, 
implemented by comp. operator C 

A B 
C 

A B 
C 

SingleInheritance

Figure 5. An overview of the composition relations discussed in
the example in this paper

In particular, note how the two composition operators Pointcut-
Advice and AspectJPointcutAdvice are composed through the
use of another composition operator, SingleInheritance. We
briefly discuss this alternative implementation of pointcut-advice,
which is shown in listing 8.

1 module PointcutAdvice {
2 init(advKind, aspectInstance, adviceMethod) {
3 var binding, constraint, advice;
4
5 advice = Selector new:
6 [OperationRef newInModule (aspectInstance type)

withSelector: adviceMethod
7 withAnnotation: "" withInstance: aspectInstance];
8 binding = Binding
9 newFromSelector: (Selector new: (this getPointcut))

10 toSelector: advice withContext:
11 [|evt| (Dictionary new) at: "this", put: (evt target)];
12 // Remainder equal to listing 6, lines 24-27 ...
13 }
14 }
15
16 module AspectJPointcutAdvice {
17 var classMatchExpr, operMatchExpr;
18
19 initType:advType matchClass:matchClass matchOper:matchOper
20 aspin:aspectInstance, method:adviceMethod) {
21 classMatchExpr=[|event| (matchClass isEqual:"*")
22 ifTrue: [true]
23 ifFalse: [matchClass isEqual:(event lookupType)]];
24
25 operMatchExpr = [|event| (matchOper isEqual:"*")
26 ifTrue:[true]
27 ifFalse:[matchOper isEqual:(event selector)] ];
28
29 this@super
30 initType:advType aspin:aspectInstance method:adviceMethod;
31 }
32
33 getPointcut {
34 return [|event| (classMatchExpr execute:event)
35 and: (operMatchExpr execute:event)];
36 }

37 }

Listing 8. Pointcut-Advice operator with improved modularity

Note that the implementation shown above behaves in ex-
actly the same way as the one defined in listing 6; we there-
fore do not explain it line by line. The important difference is
the improved modularization: listing 8 splits the implementation
of pointcut-advice into two modules: PointcutAdvice is an ab-
stract class that implements the execution of an advice within the
desired aspect instance, before or after an operation invocation.
However, it does not itself define an implementation of operation
getPointcut(), which has to be implemented by subclasses that
may thus implement different styles of pointcut expressions. Mod-
ule AspectJPointcutAdvice embodies such an extension, and
implements a version of operation getPointcut() that evaluates
an event against class- and operation matching patterns, in a way
that is similar to (a subset of) AspectJ. Through inheritance, it de-
pends on its (abstract) “parent” class, PointcutAdvice, to define
the behavior that is not related to pointcut evaluation.

This example demonstrates that it is possible to use existing
composition operators (such as inheritance) while defining new
composition operators (in this case, a pointcut-advice mechanism).

6. Discussion
6.1 Intended behavior of compositions
We note that our approach cannot automatically guarantee that
compositions that involve multiple composition operators exhibit
the desired behavior. It is either the responsibility of the program-
mer who designs and implements a new composition operator, or of
the application programmer that combines multiple compositions,
to ensure that it works correctly if combined with other composi-
tion operators—if such use is intended.

Our model does however facilitate the implementation of
constraints between multiple composition operators, by support-
ing declarative constraint specifications. For example, the defi-
nition of an aspect oriented composition operator in section 4.3
specifies a partial ordering constraint between the execution of
aspect-related behavior and the default binding. In other words, a
PreConstraint ensures that the action specified by one binding
must be executed at some point before the action specified by the
other, but not necessarily immediately before. If other composition
operators (e.g., inheritance) match the same event, in addition to
the aspect-oriented operator, it may be the case that both composi-
tion operators specify constraints in relation to the default binding.
However, unless explicit constraints are added directly between
these two composition operators, the “precedence” between these
composition operator is undefined, if they both match the same
event.

When allowing the combined use of multiple composition op-
erators, the necessary constraints between composition operators
depend on domain knowledge about the defined composition spec-
ifications. For this reason, such constraints cannot in general be de-
rived automatically. As an example, should inheritance be resolved
before evaluating aspects, or vice versa? This needs to be decided
by the designers of the respective composition operators, or even
the application itself 5.

In some cases, composition operators implement inherently
conflicting notions of composition, and can therefore never be
composed in a meaningful way. For example, when adding a sin-
gle module to both a Beta-like inheritance hierarchy as well as a

5 Note that this example corresponds roughly to call respectively execution
join points in AspectJ; there it is left to the application programmer to
decide [5].



Smalltalk-like inheritance hierarchy, the results can never be cor-
rect, since both operators have an inherently incompatible notion of
inheritance (unless adopting an approach such as in [18]). Still, as
long as each module occurs in at most one of the hierarchies, even
these composition operators can both be used in the same program.

6.2 Reasoning about correctness and optimizations
Since our approach is currently based on an interpreter and dy-
namic typing, it is hard to implement any kind of static reasoning
on the resulting compositions. Since it was primarily our intention
to allow the definition of composition mechanisms with maximum
flexibility, we have designed the language in a way that does not im-
pose many constraints. For example, currently the only fixed part
of an event selector, is the fact that they take an event as input, and
return a boolean result as output. Since functions (operations, clo-
sures) are already supported by the language, we did not have to
add any special language syntax to describe the selectors and other
parts of the base composition mechanism.

It would however be possible to define a more declarative
selector-language, to which static reasoning or partial evaluation
could be applied more easily. In addition, partial evaluation of se-
lectors could reduce the amount of event generation statements
that can potentially match each selector, thus improving both the
possibilities for optimization and reasoning about the program.

Performance has deliberately been excluded as a consideration
in the design of the language and composition mechanism. The pro-
totype implementation will exhibit slow performance for larger ex-
amples. One of the main reasons is that every event is to be con-
sidered at least once by all selectors, which all need to be evalu-
ated for each event. We do believe that the performance for such a
language can be substantially improved, by applying many known
techniques for optimization and efficient implementation of dy-
namic languages [11], as well as models for implementing aspect-
based mechanisms [7]. Suggestions already mentioned above are
partial evaluation, as well as adding restrictions to the freedom
that the current interpreted version allows (e.g., by defining a more
structured selector language).

6.3 Implementation of Co-op
The Co-op language as well as the examples discussed in this pa-
per, are implemented and available for download [2]. The current
prototype is implemented on top of the Java Aspect Metamodel In-
terpreter (JAMI), which was presented in prior work [22]. More
details about the Co-op language, its syntax, semantics and imple-
mentation can also be found in [21, Chapter 5 and Appendix A].

One important design consideration is that the operation im-
plementations of built-in modules (for example those representing
selectors, bindings, constraints, events, strings and booleans) are
implemented natively, and thus their internal actions are not seen
as “events”. This is necessary, as these modules need to interface
with the system’s implementation in JAMI. In addition, since we
are constructing composition operators within the language itself,
there has to be a set of “lowest level” actions, which are not them-
selves interpreted by composition operators. For the same reason,
the “default binding” that deals with the actual call dispatch is im-
plemented as a primitive operation, i.e. its “internal” events (which
include “calls” on the event-representation object) are not seen by
any custom-defined selectors. The implementation of each compo-
sition mechanism, which may itself generate events, must eventu-
ally reduce to this “lowest”-level binding. While designing com-
position operators, an important consideration is that its selector-
and binding-implementations should not generate events that will
be matched by the implementation of that mechanism itself, or the
implementation of a mechanism on which it depends. Otherwise,

the process of event matching itself generates new events, which
recursively get processed by event matching, ad infinitum.

7. Related work
The work in this paper is related to a large body of research on
defining new languages that support novel composition techniques,
especially in the domain of object-based and aspect languages.
Many papers also present a (small) set of composition techniques
that aim at unifying existing composition techniques. However,
most of such related research proposes a fixed set of composition
operators, presented as part of a language, extension of a language,
or an application framework. In contrast, our work focuses on a
language that has no—or just one; default—built-in composition
operators, but rather is a platform for constructing a wide range of
user-defined composition operators.

To the best of our knowledge, there are no other languages
that offer dedicated support for user-defined composition operators
(that can be reused and combined), at least not within the domain of
object-oriented and aspect-oriented languages. Please note that this
excludes languages that offer generic extension mechanisms – such
as macro’s in Lisp – or allow for the extension and modification of
the program through metaprogramming—as we will discuss below.

Of the research that aims at unifying composition techniques,
we first discuss a few that relate particularly to the example com-
position operators we have shown in this paper:

• In [9], mixin inheritance is presented as a generalization of
both regular (’Smalltalk-style’) inheritance and Beta-style in-
heritance, as well as CLOS-style mixins. But the mixin mecha-
nism itself is a fixed composition operator, and cannot be used
to define new composition operators. The definition of a Co-
op composition operator that implements mixin inheritance is
part of our future work; it is our belief that this will not pose
substantial technical problems.

• We have demonstrated that we can define and use multiple com-
position operators, including the use of respectively Smalltalk/-
Java style super and Beta-style inner, in parallel. In [18], it has
been shown how a specific method dispatching technique, im-
plemented in the language MzScheme, allows the usage of both
inheritance styles simultaneously.

• Compositional Modularity [4] is an inheritance model that sup-
ports a wide range of compositions on modules (which cor-
respond to self-referential namespaces in this model). This is
achieved by modeling the compositions as a set of operations
on the modules. Compared to our approach, there are limita-
tions to its expressiveness, due to the fixed set of primitive op-
erations. The compositional modularity model has been applied
to a variety of ‘base’ artifacts.

• Expressive, tailorable, message dispatching is a key compo-
nent of our approach; the work on predicate dispatch[15, 30]
is closely related, key distinctions are our focus on first class
composition operators and implicit invocation model that sup-
ports also aspects.

• Classpects[35] unify aspect- and object-oriented programming.
The language Eos-U implements the classpect construct, which
can be considered as a combination of aspect-behavior and ob-
ject behavior in a single abstraction mechanism. Eos-U offers
the concept of bindings, which have roughly the same structure
as the bindings in Co-op: binding advice to join points. How-
ever, there is no mechanism for expressing ordering constraints
beyond declaration order. Regardless of these similarities, Eos-
U is distinct from Co-op by offering only a fixed set of compo-
sition operators and abstractions.



• Composition filters (or interface predicates) in the Sina lan-
guage [6] define a single language mechanism that can be used
–among other things– to express various data abstraction mech-
anisms such as different forms of inheritance (single, multiple,
conditional), delegation, and aspects. filter modules are abstrac-
tions of several filter expressions, but not an independent com-
position operator. The introduction of new filter types can be
used to add additional composition behavior to a system, but all
within the same framework of composition filters, not as new,
independent composition operators.

There are other approaches that allow for the construction of user-
defined composition operators. In particular, our work relates to
metaprogramming [12] and especially meta-object protocols[25].
Depending on the programming language/environment, metapro-
gramming offers the programmer the full power to modify the be-
havior of programs. This includes the ability to write custom com-
positions. As explained e.g. in [24], the power of metaprogram-
ming comes with more complexity and responsibility. In particu-
lar, it may be extremely hard to define multiple application-specific
compositions in such a way that they work together without inter-
ference (i.e. such that they are composable).

Meta-object protocols (MOPs) aim at addressing this by provid-
ing a framework –albeit at the metalevel– with more structure and
constraints, so that e.g. composition operators can be defined within
a well-defined structure. This means that the difficulty of language
design –except for the concrete syntax– is now on the MOP de-
signer. Indeed, our work might just as well have been presented as
a novel design of a MOP, but for practical reasons we chose to use
a concrete language, Co-op. We are not aware of any MOPs (or
languages, or frameworks) that offer similar generic abstractions
and structure as we presented in this paper. In particular, we do not
know any MOPs that provide abstractions for defining new compo-
sition operators with similar variety, expressiveness and compos-
ability. For example, Co-op explicitly supports a variety of object-
oriented as well as aspect-oriented composition mechanisms. In
Co-op, composition mechanisms are constructed using first-class,
composable elements, which can be reused to define or compose
new composition mechanisms. In addition, the resulting composi-
tion operators are also first-class entities, which means they can be
composed, reused and extended as well.

It may well be possible to implement our approach as a metaob-
ject protocol on top of, e.g., CLOS. However, the core contribu-
tion of our approach is not the Co-op language itself, but rather
the model of composition that is enabled by the elements presented
in section 3, e.g., selectors, bindings, constraints. These elements
provide explicit support for the expression of composition mecha-
nisms that are based on the notion of implicit invocation, such as
aspects. In addition, our approach supports the expression of ex-
plicit, declarative constraint specifications to address dependencies
between composition mechanisms. In a CLOS-based implementa-
tion, we would still have to provide all the novel abstractions and
infrastructure that we have presented in this paper.

Of the research that aims at providing frameworks for higher-
level languages through reflection or meta object protocols, we
briefly discuss the following:

• [34] describe an “open, extensible object model” which shares
some of our goals, as expressed by: Raising the implementation
[of the language] to the programmers’ level lets them design
and control their own implementation mechanisms in which to
express concise solutions and free the original language de-
signer from ever having to say “I’m sorry”. Another impor-
tant goal of this work is to come up with the smallest pos-
sible language implementation that is programmer-accessible,
and allows for bootstrapping more complex object models. As

a result, this work differs from our proposal that it aims at the
most simple mechanisms, essentially based on allowing pro-
grammers to redefine method lookup in arbitrary ways. In con-
trast, we provide a model that offers a specifically designed
structure (or: more detailed meta protocol), including selectors,
constraints and bindings. In addition, our model is class-based,
rather than prototype-based, and handles and integrates both
aspect-oriented and object-oriented models.

• AspectS [23] is framework for supporting aspect-programming
in Smalltalk. It extends the Smalltalk MOP with features that
enable aspect programming. As such, it does not extend the
language itself. For instance, it uses Smalltalk itself as the
pointcut language, similar to our use of the ‘base’ language for
defining selectors.

• MetaClassTalk [8] aims at ‘unified aspect-oriented program-
ming’. It exploits a combination of mixin-based inheritance and
reflection to achieve this. Its aspects consist of (a) a set of mix-
ins, (b) a pre-weaving script, (c) a post-weaving script. In this
approach, every programmer is a meta-programmer, with a lot
of control—and responsibility to write correct meta-programs.
MetaClassTalk also involves ‘weave-time’ code; which is a dis-
advantage from the point of view of abstraction, but does have
potential benefits with respect to performance optimization and
static reasoning.

In [29], Masuhara and Kiczales propose the Aspect Sand Box, an
interpreter framework to model aspect mechanisms. Using this
framework, the effects of aspects are defined in terms of weav-
ing semantics. The weaving process is modeled by extending or
modifying the interpreter of a base language that models a single-
inheritance object-oriented language (which can be seen as a core
subset of Java). This approach differs from ours in that it is a flex-
ible way to define composition operators, but as a new, fixed lan-
guage, and not expressed or extensible within the language itself.
The approach by Kojarski and Lorenz in [26], is different from
ours in a similar way, even though it aims at supporting multiple
aspect composition operators as part of Domain Specific Aspect
Languages that can be combined in a single application.

Finally, we mention several frameworks that aim at offering a
generic platform for OO and AOP language implementations (e.g.
[3], [1], [10], [20], [38], and [14]). For such platforms, the design-
ers have also made efforts to find a small set of generic constructs
that typically serve as a target ‘language’ for a compiler/code trans-
formation. An important distinction with our work is that these
platforms do not aim at, and hence do not support, the ability of
creating user-defined composition operators.

8. Evaluation and Conclusion
In this paper, we presented the Co-op composition model and lan-
guage. The main goal of Co-op is that it enables the creation—and
usage—of first-class composition operators for expressing a wide
variety of composition techniques. Examples that we have demon-
strated in this paper are single inheritance, delegation and pointcut-
advice, although we have also implemented various other operators
(not included in this paper), including multiple inheritance, beta-
style inheritance, support for super- and inner-calls, and a domain
specific composition for observations. The implementation of these
compositions can be found in [2]. In addition, we have defined a
detailed denotational semantics of the Co-op language, which is
included in [21].

This paper makes the following contributions:

1. Using a case study that discusses alternative inheritance seman-
tics, delegation and aspects, we argue that languages with fixed



composition semantics cannot adequately express designs with-
out sacrificing some desired design properties.

2. We present a novel composition model that supports composi-
tion operators as user-defined, modular and reusable first-class
abstractions. We are not aware of any language or MOP that has
a similar model (design) and characteristics.

3. The paper illustrates the instantiation of the model within a
simple, experimental, object-based language (Co-op); this lan-
guage has been implemented and tested for a number of (com-
mon) composition operators.

4. Our proposed model unifies and supports both object-oriented
and aspect-oriented composition techniques; the paper illus-
trates this by showing how to express inheritance, delegation
and aspects.

5. In particular, our model supports composition of composition
operators; both the combination of multiple, different operators
in a single application, and the ability to construct new compo-
sition operators from existing ones.

We believe the notion of user-defined, first-class composition oper-
ators, brings us closer to the following goal, as expressed by Guy
Steele in his “growing a language” talk [19]: “a language design
can no longer be a thing. It must be a pattern – a pattern for growth
- a pattern for growing the pattern for defining the patterns that
programmers can use for their real work and their main goal.”
In this case the pattern is a means to grow (by composition) user-
defined composition operators, which express particular patterns of
interaction among modules.

8.1 Design Considerations and Lessons learned
To achieve a better understanding how Co-op achieves the features
we just presented, we will now discuss the key elements in the de-
sign of the Co-op model, and discuss how they contribute to the
capabilities of Co-op. Although these design elements cannot be
seen in isolation, we believe that the discussion below is partially
generalizable to other composition techniques. In fact, many ob-
servations have been derived from the experiences in the design of
object- and aspect-oriented languages.

• Implicit invocations: to be able to offer a generalized mecha-
nism for both object-based and aspect-based compositions, the
core design of the model needed to fully decouple message
sends (i.e. event generation) from an eventual method execu-
tion. For this reason we adopt the notion of implicit invoca-
tions [32]; there exists a dynamic, one-to-many relationship be-
tween a message send and the possible operation executions or
metalevel actions.

• Use of queries (the ‘selectors’ in our model) for selecting events
and actions: the advantage of specifying a query instead of a
fixed, ‘hard-coded’ identifier to refer to program elements, is
that a query allows for much more conceptual/semantic re-
lations (see e.g. [31]), rather than accidental and inflexible
identifier-based connections.

• Use of reflective information (event reflection, program in-
trospection and state information—through object interfaces)
within queries: this is also one of the lessons from aspect lan-
guages; the use of context information—through a generic
interface— is a powerful means to pass on context informa-
tion between modules without making the modules dependent
on each other (i.e. improving the composability). This context
information may be available only at run-time.

• Concept of bindings for (a) associating queries with actions,
and (b) associating data variables in different contexts: the first

is a common technique in AOP languages (see e.g. Eos-U, as
discussed in section 7).

• Use of constraints for composing bindings: this turned out to
be a crucial issue in achieving composability; the ability to
express constraints, including dynamic constraints, at a fine-
grained, per-binding level. A topic of future work is whether it
is important to be able to apply constraints to particular groups
of bindings, which may even be selected by queries

• Using metalevel actions to manipulate events: composing sys-
tems through meta-level manipulation of messages between the
system components has been proven before to be a success-
ful technique [6, 16]. It has two attractive properties: it allows
to reason about the system without breaking the encapsula-
tion of the individual components, and it is relatively easy to
offer a generic, shared abstraction of messages, which avoids
application-specific dependencies.

• Representing composition operators, bindings, queries (selec-
tors) and constraints as first-class citizens: this allows the ex-
plicit definition, manipulation and reuse of these elements. For
example, this avoids the necessity of dedicated language con-
structs or keywords for referring to these elements.

• Multi-stage dispatch: an important feature, because it helps to
realize transitive composition relations, such as exemplified by
inheritance in section 4.1, where the method lookup for a sin-
gle message send may involve multiple bindings. Multi-stage
dispatch also promotes the composability of composition oper-
ators, as it allows for the application of multiple composition
operators for a single event.

• Dispatch to multiple operations: this means that a single event
may yield multiple actions and even multiple operation exe-
cutions. This allows for example expressing before/after ad-
vices in an AOP style, and also less common examples of
multiple dispatch, such as multi-cast semantics. Note that both
multi-stage dispatch and dispatch to multiple operations require
proper ordering constraints.

8.2 Future Work
There are still many possible issues to explore. An important issue
that needs to be further investigated, is to what extent it is necessary
to specify constraints among (bindings of) different composition
operators, as this bears the theoretical risk that for every new com-
position operator, all possible interactions with existing composi-
tion operators needs to be investigated and specified. However, to
date, we have not experienced such a need. As an additional future
work, there are still many composition techniques that we would
like to experiment with, and demonstrate that they can be expressed
using Co-op. Examples include: traits [36], mixins [9], composition
filters [6], and so forth. Along these lines, we are also interested to
implement a composition framework as proposed in [33], which
outlines a number of core operations from which a wide range of
OO compositions can be constructed: it would be interesting to be
able to express the core operations as separate composition opera-
tors, and use those to compose new, higher-level, composition op-
erators.

References
[1] Java Aspect Metamodel Interpreter - http://jami.sf.net/, 2007.

[2] Co-op homepage, http://wwwhome.cs.utwente.nl/~havingaw/
coop/, 2008.

[3] P. Avgustinov, A. S. Christensen, L. J. Hendren, S. Kuzins, J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc:
An extensible aspectj compiler. Transactions on Aspect-Oriented
Software Development I, 3880/2006:293 – 334, February 2006.

http://jami.sf.net/
http://wwwhome.cs.utwente.nl/~havingaw/coop/
http://wwwhome.cs.utwente.nl/~havingaw/coop/


[4] G. Banavar and G. Lindstrom. An application framework for module
composition tools. In In ECOOP ’96, number 1098 in Lecture Notes
in Computer Science, pages 91–113. Springer Verlag, 1996.

[5] O. Barzilay, Y. A. Feldman, S. Tyszberowicz, and A. Yehudai. Call
and execution semantics in AspectJ. In C. Clifton, R. Lämmel,
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