skip to main content
10.1145/1753326.1753534acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Why it's quick to be square: modelling new and existing hierarchical menu designs

Published:10 April 2010Publication History

ABSTRACT

We consider different hierarchical menu and toolbar-like interface designs from a theoretical perspective and show how a model based on visual search time, pointing time, decision time and expertise development can assist in understanding and predicting interaction performance. Three hierarchical menus designs are modelled -- a traditional pull-down menu, a pie menu and a novel Square Menu with its items arranged in a grid -- and the predictions are validated in an empirical study. The model correctly predicts the relative performance of the designs -- both the eventual dominance of Square Menus compared to traditional and pie designs and a performance crossover as users gain experience. Our work shows the value of modelling in HCI design, provides new insights about performance with different hierarchical menu designs, and demonstrates a new high-performance menu type.

Skip Supplemental Material Section

Supplemental Material

1753534.mp4

mp4

173.2 MB

References

  1. Accot, J. and Zhai, S. Beyond Fitts' Law: Models for trajectory-based HCI tasks. In Proc. CHI 1997, ACM Press (1997), 295--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ahlström, D. Modeling and improving selection in cascading pull-down menus using Fitts' law, the Steering law and force fields. In Proc. CHI 2005, ACM Press (2005), 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ahlström, D., Alexandrowicz, R. and Hitz, M. Improving menu interaction: A comparison of standard, force enhanced and jumping menus. In Proc. CHI 2006, ACM Press (2006), 1067--1076. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bailly, G., Lecolinet, E. and Nigay, L. Flower Menus: A new type of marking menus with large menu breadth, within groups and efficient mode memorization. In Proc. AVI 2008, ACM Press (2008), 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bailly, G., Lecolinet, E. and Nigay, L. Wave Menus: Improving the novice mode of hierarchical marking menus. In Proc. INTERACT 2007, 475--488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Balakrishnan, R. "Beating" Fitts' Law: Virtual enhancements for pointing facilitation. Int. Journal of Human Computer Studies 61, 6 (2004), 857--874. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Byrne, M.D. ACT-R/PM and menu selection: Applying a cognitive architecture to HCI. Int. Journal of Human Computer Studies 55, 1 (2001), 41--84.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Byrne, M.D., Anderson, J.R., Douglass, S. and Matessa, M. Eye tracking the visual search of click-down menus. In Proc. CHI 1999, 402--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Callahan, J., Hopkins, D., Weiser, M. and Shneiderman, B. An empirical comparison of pie vs. linear menus. In Proc. CHI 1988, 95--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Card, S.K. Visual search of computer command menus. In Bouma, H. and Bouwhuis, D.G. (Eds.), Attention and Performance, X: Control of Language Processes, Erlbaum, London, 1984, 97--108.Google ScholarGoogle Scholar
  11. Card, S.K., Moran, T.P. and Newell, A. The Psychology of Human-Computer Interaction. Erlbaum Associates, Hillsdale, NJ, 1983. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cockburn, A. and Gin, A. Faster cascading menu selections with enlarged activation areas. In Proc. GI 2006, Canadian Inf. Processing Society (2006), 65--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cockburn, A. and Gutwin, C. A predictive model of human performance with scrolling and hierarchical lists. HCI 24, 3 (2008), 273--314.Google ScholarGoogle Scholar
  14. Cockburn, A., Gutwin, C. and Greenberg, S. A predictive model of menu performance. In Proc. CHI 2007, ACM Press (2007), 627--636. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Findlater, L. and McGrenere, J. A comparison of static, adaptive, and adaptable menus. In Proc. CHI 2004, ACM Press (2004), 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Findlater, L., Moffatt, K., McGrenere, J. and Dawson, J. Ephemeral adaptation: The use of gradual onset to improve menu selection performance. In Proc. CHI 2009, ACM Press (2009), 1655--1664. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychology 47 (1954), 381--391.Google ScholarGoogle ScholarCross RefCross Ref
  18. Greenberg, S. and Witten, I.H. Supporting command reuse: Empirical foundations and principles. Int. J. of Man-Machine Studies 39, 3 (1993), 353--390. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Grossman, T., Dragicevic, P. and Balakrishnan, R. Strategies for accelerating on-line learning of hotkeys. In Proc. CHI 2007, ACM Press (2007), 1591--1600. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hanson, S.J., Kraut, R.E. and Farber, J.M. Interface design and multivariate analysis of UNIX command use. ACM TOIS 2, 1 (1984), 42--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Harrison, B.L. and Vicente, K.J. An experimental evaluation of transparent menu usage. In Proc. CHI 1996, ACM Press (1996), 391--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hick, W.E. On the rate of gain of information. The Quarterly Journal of Exp. Psych. 4, 1 (1952), 11--26.Google ScholarGoogle ScholarCross RefCross Ref
  23. Hornof, A.J. and Kieras, D.E. Cognitive modeling reveals menu search is both random and systematic. In Proc. CHI 1997, ACM Press (1997), 107--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hyman, R. Stimulus information as a determinant of reaction time. J. Exp. Psych. 45, 3 (1953), 188--196.Google ScholarGoogle ScholarCross RefCross Ref
  25. Kobayashi, M. and Igarashi, T. Considering the direction of cursor movement for efficient traversal of cascading menus. In Proc. UIST 2003, ACM Press (2003), 91--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kurtenbach, G. and Buxton, B. The limits of expert performance using hierarchic marking menus. In Proc. InterCHI 1993, ACM Press (1993), 482--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kurtenbach, G.P., Sellen, A.J. and Buxton, W.A.S. An empirical evaluation of some articulatory and cognitive aspects of marking menus. HCI 8, 1 (1993), 1--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lane, D.M., Napier, H.A., Batsell, R.R. and Naman, J.L. Predicting the skilled use of hierarchical menus with the Keystroke-Level model. HCI 8, 2, (1993), 185--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lee, E. and McGregor, J. Minimizing user search time in menu retrieval systems. Human Factors 27, 2 (1985), 157--162.Google ScholarGoogle ScholarCross RefCross Ref
  30. Newell, A. and Rosenbloom, P.S. Mechanisms of skill acquisition and the law of practice. In Anderson, J.R. (Ed.) Cognitive Skills and their Acquisition, Erlbaum, Hillsdale, NJ, 1981, 1--55.Google ScholarGoogle Scholar
  31. Oakley, I., Brewster, S. and Gray, P. Solving multi-target haptic problems in menu interaction. Ext. Abstracts CHI 2001, ACM Press (2001), 357--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sears, A. and Shneiderman, B. Split menus: effectively using selection frequency to organize menus. ACM TOCHI 1, 1 (1994), 27--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. St. Amant, R., Horton, T.E. and Ritter, F.E. Model-based evaluation of expert cell phone menu interaction. ACM TOCHI 14, 1 (2007), 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Tanvir, E., Cullen, J., Irani, P. and Cockburn, A. AAMU: Adaptive activation area menus for improving selection in cascading pull-down menus. In Proc. CHI 2008, ACM Press (2008), 1381--1384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Thimbleby, H. Press On: Principles of interaction programming. MIT Press, Cambridge, MA, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tsandilas, T. and schraefel, m.c. Bubbling menus: A selective mechanism for accessing hierarchical drop-down menus. In Proc. CHI 2007, 1195--1204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wolfe, J. What can 1 million trials tell us about visual search? Psychological Science 9, 1 (1998), 33--39.Google ScholarGoogle ScholarCross RefCross Ref
  38. Zhao, S., Agrawala, M. and Hinckley, K. Zone and polygon menus: Using relative position to increase the breadth of multi-stroke marking menus. In Proc. CHI 2006, ACM Press (2006), 1077--1086. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhao, S., Dragicevic, P., Chignell, M., Balakrishnan, R. and Baudisch, P. earPod: Eyes-free menu selection using touch input and reactive audio feedback. In Proc. CHI 2007, ACM Press (2007), 1395--1404. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Why it's quick to be square: modelling new and existing hierarchical menu designs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '10: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2010
      2690 pages
      ISBN:9781605589299
      DOI:10.1145/1753326

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 April 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader