skip to main content
research-article

Fabricating spatially-varying subsurface scattering

Published: 26 July 2010 Publication History

Abstract

Many real world surfaces exhibit translucent appearance due to subsurface scattering. Although various methods exists to measure, edit and render subsurface scattering effects, no solution exists for manufacturing physical objects with desired translucent appearance. In this paper, we present a complete solution for fabricating a material volume with a desired surface BSSRDF. We stack layers from a fixed set of manufacturing materials whose thickness is varied spatially to reproduce the heterogeneity of the input BSSRDF. Given an input BSSRDF and the optical properties of the manufacturing materials, our system efficiently determines the optimal order and thickness of the layers. We demonstrate our approach by printing a variety of homogenous and heterogenous BSSRDFs using two hardware setups: a milling machine and a 3D printer.

Supplementary Material

JPG File (tp048-10.jpg)
Supplemental material. (062.zip)
FabBSSRDF.mp4 - C Paper Video, in QuickTime(MP4 and H264).
MP4 File (tp048-10.mp4)

References

[1]
Arbree, A. 2009. Scalable And Heterogeneous Rendering Of Subsurface Scattering Materials. PhD thesis, Cornell University, Ithaca, New York. http://hdl.handle.net/1813/13986.
[2]
Arridge, S. R., and Schotland, J. 2009. Optical tomography: Forward and inverse problems. Inverse Problems 25, 12, 123010:(59pp).
[3]
Baumgart, B. G. 1972. Winged edge polyhedron representation. Tech. rep., Stanford, CA, USA.
[4]
Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2004. Shell texture functions. ACM Trans. Graph. 23, 3, 343--353.
[5]
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. 2000. Acquiring the reflectance field of a human face. In Proc. ACM SIGGRAPH, 145--156.
[6]
d'Eon, E., Luebke, D., and Enderton, E. 2007. Efficient Rendering of Human Skin. Eurographics Symposium on Rendering, 147--157.
[7]
Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24, 3, 1032--1039.
[8]
Donner, C., Weyrich, T., d'Eon, E., Ramamoorthi, R., and Rusinkiewicz, S. 2008. A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Trans. Graph. 27, 5, 140.
[9]
Donner, C., Lawrence, J., Ramamoorthi, R., Hachisuka, T., Jensen, H. W., and Nayar, S. 2009. An empirical bssrdf model. ACM Transactions on Graphics 28, 3 (July), 30:1--30:10.
[10]
Dorsey, J., Edelman, A., Legakis, J., Jensen, H. W., and Pedersen, H. K. 1999. Modeling and rendering of weathered stone. In Proc. ACM SIGGRAPH, 225--234.
[11]
Ghosh, A., Hawkins, T., Peers, P., Frederiksen, S., and Debevec, P. 2008. Practical modeling and acquisition of layered facial reflectance. ACM Trans. Graph. 27, 5, 139.
[12]
Goesele, M., Lensch, H. P. A., Lang, J., Fuchs, C., and Seidel, H.-P. 2004. DISCO: acquisition of translucent objects. ACM Trans. Graph. 23, 3, 835--844.
[13]
Hanrahan, P., and Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. In Proc. ACM SIGGRAPH, 165--174.
[14]
Hao, X., and Varshney, A. 2004. Real-time rendering of translucent meshes. In ACM Trans. Graph., vol. 23. 120--142.
[15]
Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. M. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Transactions on Graphics 29, 3 (Aug.).
[16]
Ishimaru, A. 1978. Wave Propagation and Scattering in Random Media. Academic Press.
[17]
Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proc. ACM SIGGRAPH, 511--518.
[18]
Lensch, H. P. A., Goesele, M., Bekaert, P., Magnor, J. K. M. A., Lang, J., and Seidel, H.-P. 2003. Interactive rendering of translucent objects. Computer Graphics Forum 22, 2, 195--205.
[19]
Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. 28, 3, 1--6.
[20]
Mount, D., and Arya, S. 1997. ANN: A library for approximate nearest neighbor searching. In CGC 2nd Annual Fall Workshop on Computational Geometry.
[21]
Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. 1977. Geometrical Considerations and Nomenclature for Reflectance. National Bureau of Standards (US).
[22]
Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., and Dutré, P. 2006. A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graph. 25, 3, 746--753.
[23]
Pharr, M., and Hanrahan, P. M. 2000. Monte Carlo evaluation of non-linear scattering equations for subsurface reflection. In Proc. ACM SIGGRAPH, 275--286.
[24]
Porumbescu, S. D., Budge, B., Feng, L., and Joy, K. I. 2005. Shell maps. ACM Trans. Graph. 24, 3, 626--633.
[25]
Press, W. H., et al. 1992. Numerical Recipes in C (Second Edition).
[26]
Song, Y., Tong, X., Pellacini, F., and Peers, P. 2009. SubEdit: a representation for editing measured heterogeneous subsurface scattering. ACM Transactions on Graphics 28, 3 (Aug.), 31:1--31:9.
[27]
Stam, J. 1995. Multiple scattering as a diffusion process. In Euro. Rendering Workshop, 41--50.
[28]
Tariq, S., gardner, A., Llamas, I., Jones, A., Debevec, P., and Turk, G. 2006. Efficiently estimation of spatially varying subsurface scattering parameters. In 11th Int'l Fall Workshop on Vision, Modeling, and Visualzation 2006, 165--174.
[29]
Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2005. Modeling and rendering of quasi-homogeneous materials. ACM Trans. Graph. 24, 3, 1054--1061.
[30]
Vilbrandt, T., Malone, E., H., L., and Pasko, A. 2008. Universal desktop fabrication. In Heterogeneous Objects Modelling and Applications, 259--284.
[31]
Wang, R., Tran, J., and Luebke, D. 2005. All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Trans. Graph. 24, 3, 1202--1207.
[32]
Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., and Shum, H.-Y. 2008. Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27, 1, 9:1--9:18.
[33]
Wang, R., Cheslack-Postava, E., Luebke, D., Chen, Q., Hua, W., Peng, Q., and Bao, H. 2008. Real-time editing and relighting of homogeneous translucent materials. The Visual Computer 24, 565--575(11).
[34]
Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graph. 25, 3, 1013--1024.
[35]
Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3, 1--6.
[36]
Xu, K., Gao, Y., Li, Y., Ju, T., and Hu, S.-M. 2007. Real-time homogenous translucent material editing. Computer Graphics Forum 26, 3, 545--552.

Cited By

View all
  • (2023)Perceptual Translucency in 3D Printing Using Surface TextureJournal of Imaging10.3390/jimaging90501059:5(105)Online publication date: 22-May-2023
  • (2023)Towards Material Digitization with a Dual-scale Optical SystemACM Transactions on Graphics10.1145/359214742:4(1-13)Online publication date: 26-Jul-2023
  • (2023)Meso-Facets for Goniochromatic 3D PrintingACM Transactions on Graphics10.1145/359213742:4(1-12)Online publication date: 26-Jul-2023
  • Show More Cited By

Index Terms

  1. Fabricating spatially-varying subsurface scattering

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 29, Issue 4
    July 2010
    942 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/1778765
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 July 2010
    Published in TOG Volume 29, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)24
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 20 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Perceptual Translucency in 3D Printing Using Surface TextureJournal of Imaging10.3390/jimaging90501059:5(105)Online publication date: 22-May-2023
    • (2023)Towards Material Digitization with a Dual-scale Optical SystemACM Transactions on Graphics10.1145/359214742:4(1-13)Online publication date: 26-Jul-2023
    • (2023)Meso-Facets for Goniochromatic 3D PrintingACM Transactions on Graphics10.1145/359213742:4(1-12)Online publication date: 26-Jul-2023
    • (2023)State of the Art in Efficient Translucent Material Rendering with BSSRDFComputer Graphics Forum10.1111/cgf.1499843:1Online publication date: 22-Dec-2023
    • (2022)Inducing robustness and plausibility in deep learning optical 3D printer modelsOptics Express10.1364/OE.45511530:11(18119)Online publication date: 10-May-2022
    • (2022)Look-Ahead Training with Learned Reflectance Loss for Single-Image SVBRDF EstimationACM Transactions on Graphics10.1145/3550454.355549541:6(1-12)Online publication date: 30-Nov-2022
    • (2022)Shape dithering for 3D printingACM Transactions on Graphics10.1145/3528223.353012941:4(1-12)Online publication date: Jul-2022
    • (2021)Deep learning models for optically characterizing 3D printersOptics Express10.1364/OE.41079629:2(615)Online publication date: 4-Jan-2021
    • (2021)Robust and practical measurement of volume transport parameters in solid photo-polymer materials for 3D printingOptics Express10.1364/OE.40609529:5(7568)Online publication date: 25-Feb-2021
    • (2021)A gradient-based framework for 3D print appearance optimizationACM Transactions on Graphics10.1145/3450626.345984440:4(1-15)Online publication date: 19-Jul-2021
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media