skip to main content
10.1145/1807167.1807174acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Boosting spatial pruning: on optimal pruning of MBRs

Published: 06 June 2010 Publication History

Abstract

Fast query processing of complex objects, e.g. spatial or uncertain objects, depends on efficient spatial pruning of objects' approximations, which are typically minimum bounding rectangles (MBRs). In this paper, we propose a novel effective and efficient criterion to determine the spatial topology between multi-dimensional rectangles. Given three rectangles R, A, and B, in a multi-dimensional space, the task is to determine whether A, is definitely closer to R, than B. This domination relation is used in many applications to perform spatial pruning. Traditional techniques apply spatial pruning based on minimal and maximal distance. These techniques however show significant deficiencies in terms of effectivity. We prove that our decision criterion is correct, complete, and efficient to compute even for high dimensional databases. In addition, we tackle the problem of computing the number of objects dominating an object o. The challenge here is to incorporate objects that only partially dominate o. In this work we will show how to detect such partial domination topology by using a modified version of our decision criterion. We propose strategies for conservatively and progressively estimating the total number of objects dominating an object. Our experiments show that the new pruning criterion, albeit very general and widely applicable, significantly outperforms current state-of-the-art pruning criteria.

References

[1]
E. Achtert, T. Bernecker, H.-P. Kriegel, E. Schubert, and A. Zimek. Elki in time: Elki 0.2 for the performance evaluation of distance measures for time series. In SSTD08, 2009.
[2]
E. Achtert, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle. Reverse k-nearest neighbor search in dynamic and general metric databases. In EDBT, pages 886--897, 2009.
[3]
N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An efficient and robust access method for points and rectangles. In Proc. SIGMOD, 1990.
[4]
S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-Tree: An index structure for high-dimensional data. In Proc. VLDB, 1996.
[5]
G. Beskales, M. A. Soliman, and I. F. IIyas. Efficient search for the top-k probable nearest neighbors in uncertain databases. Proc. VLDB Endow., 1(1):326--339, 2008.
[6]
S. Brecheisen, H.-P. Kriegel, P. Kröger, M. Pfeifle, and M. Schubert. Using sets of feature vectors for similarity search on voxelized CAD objects. In Proc. SIGMOD, 2003.
[7]
J. Chen and R. Cheng. Efficient evaluation of imprecise location-dependent queries. 2007.
[8]
R. Cheng, J. Chen, M. Mokbel, and C. Chow. Probabilistic verifiers: Evaluating constrained nearest-neighbor queries over uncertain data. 2008.
[9]
R. Cheng, D. Kalashnikov, and S. Prabhakar. Querying imprecise data in moving object environments. In IEEE TKDE, 2004.
[10]
R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In SIGMOD '03: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pages 551--562, New York, NY, USA, 2003. ACM.
[11]
T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle. Constrained reverse nearest neighbor search on mobile objects. In ACM SIGSPATIAL GIS, 2009.
[12]
T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle. Incremental reverse nearest neighbor ranking in vector spaces. In SSTD, pages 265--282, 2009.
[13]
T. Emrich, H.-P. Kriegel, P. Kröger, M. Renz, and A. Züfle. Boosting spatial pruning: On optimal pruning of mbrs (extended version). http://www.dbs.ifi.lmu.de/Publikationen/Papers/SIGMOD2010.pdf. Technical report.
[14]
V. Gaede and O. Günther. Multidimensional access methods. ACM CSUR, 30(2):170--231, 1998.
[15]
A. Guttman. R-Trees: A dynamic index structure for spatial searching. In Proc. SIGMOD, pages 47--57, 1984.
[16]
M. Hadjieleftheriou, G. Kollios, J. Tsotras, and D. Gunopulos. Indexing spatiotemporal archives. The VLDB Journal, 15(2):143--164, 2006.
[17]
S. Hettich and S. D. Bay. The uci kdd archive., 1999.
[18]
G. R. Hjaltason and H. Samet. Ranking in spatial databases. In Proc. SSD, 1995.
[19]
E. Keogh. Exact indexing of dynamic time warping. In Proc. VLDB, 2002.
[20]
X. Lian and L. Chen. Probabilistic inverse ranking queries over uncertain data. 2009.
[21]
N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In SIGMOD '95, pages 71--79, 1995.
[22]
Y. Tao, R. Cheng, X. Xiao, W. K. Ngai, B. Kao, and S. Prabhakar. Indexing multi-dimensional uncertain data with arbitrary probability density functions. In VLDB '05. VLDB Endowment, 2005.
[23]
Y. Tao, D. Papadias, and X. Lian. Reverse kNN search in arbitrary dimensionality. In Proc. VLDB, 2004.
[24]
Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search, 2002.
[25]
S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of continuously moving objects. SIGMOD Rec., 29(2):331--342, 2000.
[26]
N. Zacharias and M. I. Zacharias. The twin astrographic catalog on the hipparcos system. The Astronomical Journal, 118(5):2503--2510, 1999.

Cited By

View all

Index Terms

  1. Boosting spatial pruning: on optimal pruning of MBRs

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGMOD '10: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data
    June 2010
    1286 pages
    ISBN:9781450300322
    DOI:10.1145/1807167
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 06 June 2010

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. knn
    2. pruning
    3. rectangles
    4. rknn
    5. spatial

    Qualifiers

    • Research-article

    Conference

    SIGMOD/PODS '10
    Sponsor:
    SIGMOD/PODS '10: International Conference on Management of Data
    June 6 - 10, 2010
    Indiana, Indianapolis, USA

    Acceptance Rates

    Overall Acceptance Rate 785 of 4,003 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 16 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Quantifying the competitiveness of a dataset in relation to general preferencesThe VLDB Journal10.1007/s00778-023-00804-133:1(231-250)Online publication date: 8-Aug-2023
    • (2022)Complete and Sufficient Spatial Domination of Multidimensional RectanglesSpatial Gems, Volume 110.1145/3548732.3548737(25-32)Online publication date: 5-Aug-2022
    • (2018)Exact processing of uncertain top-k queries in multi-criteria settingsProceedings of the VLDB Endowment10.14778/3204028.320403111:8(866-879)Online publication date: 1-Apr-2018
    • (2017)Uncertain Voronoi cell computation based on space decompositionGeoinformatica10.1007/s10707-017-0293-221:4(797-827)Online publication date: 1-Oct-2017
    • (2016)Enabling Scalable Geographic Service Sharing with Weighted Imprecise Voronoi CellsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2015.246480428:2(439-453)Online publication date: 1-Feb-2016
    • (2016)Dynamic Reverse Furthest Neighbor Querying Algorithm of Moving ObjectsAdvanced Data Mining and Applications10.1007/978-3-319-49586-6_18(266-279)Online publication date: 13-Nov-2016
    • (2015)Optimal Spatial DominanceProceedings of the 2015 ACM SIGMOD International Conference on Management of Data10.1145/2723372.2749442(923-938)Online publication date: 27-May-2015
    • (2015)Efficient Notification of Meeting Points for Moving Groups via Independent Safe RegionsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2014.233430427:7(1767-1781)Online publication date: 1-Jul-2015
    • (2015)Impact Set: Computing Influence Using Query LogsThe Computer Journal10.1093/comjnl/bxv01658:11(2928-2943)Online publication date: 3-Mar-2015
    • (2015)On reverse-k-nearest-neighbor joinsGeoinformatica10.1007/s10707-014-0215-519:2(299-330)Online publication date: 1-Apr-2015
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media