skip to main content
10.1145/1809980.1810053acmotherconferencesArticle/Chapter ViewAbstractPublication PageswebmediaConference Proceedingsconference-collections
research-article

Todas as palavras da sentença como métrica para um sumarizador automático

Published: 26 October 2008 Publication History

Abstract

The purpose of this work is to present an automatic summarizer that uses as a metric the number of words into a sentence to define the text author's pragmatic profile. Using the number of words as a metric, the original text is classified according to its temporal measures and textual composition, which is based on its formality. Also, these features are parameters to the summary generation that indicate the compression level. This work uses traditional methodologies of automatic summarization and compares these results to results obtained with our proposal.

References

[1]
Brown, R. (1973). "A first language", UNIVERSITY Press, Cambridge. http://bowlandfiles.lancs.ac.uk/chimp/langac/LECTURE2/2brown.htm, acessado em março de 2008.
[2]
Guelpeli, M. V. C.; Ribeiro, C.; Omar, N. (2004). "Aprendizado por Reforço para um Sistema Tutor Inteligente sem Modelo Explícito do Aprendiz", Revista Brasileira de Informática na Educação- RBIE -- SBC Volume 12 -- Número 2 pág. 69--77 - ISSN 1414-5685- mês de Julho a Dezembro de 2004-Rio de Janeiro-Brasil.
[3]
Guelpeli, M. V. C.; Garcia A. C. B.(2007)."Automatic Summarizer Based on Pragmatic Profiles" International Conference WWW/Internet 2007- IADIS- Volume II pág. 149--153- ISBN: 978-972-8924-44-7 - mês de Outubro de 2007- Vila Real-Portugal.
[4]
Franco, M. G.; Reis, M. J; Gil, T. M. S.(2003). "Comunicação, Linguagem e Fala" Ministério da Educação de Portugal, Lisboa.
[5]
Hearst, M. A. (1993). "TextTiling: A quantitative approach to discourse segmentation." Technical Report Sequoia 93/24, Computer Science Division, University of California, Berkeley.
[6]
Hearst, M. A.(1997). "TextTiling: Segmenting text into multi--paragraph subtopic passages" Computational Linguistics, vol. 23, no. 1 pp. 33--64, 1997. Disponível em: http://ucrel.lancs.ac.uk/acl/J/J97/J97-1003.pdf, acessado em 06 de Maio de 2007.
[7]
Hutchins, J. (1987). "Summarization: Some problems and Methods." In: Jones. Meaning: The frontier of informatics. Cambridge. London, pp. 151--173.
[8]
Hovy, E. (1988). "Generating Natural Language under Pragmatic Constraints." Lawrence Erlbaum Associates Publishers, Hillsdale, New Jersey.
[9]
Hovy, E.; C. Y. Lin; L. Zhou. (2005). "A BE-based multi-document summarizer with sentence compression." To appear in Proceedings of Multilingual Summarization Evaluation (ACL 2005), Ann Arbor, MI.
[10]
Hovy, E.; Kim, S. M.(2005). "Automatic Detection of Opinion Bearing Words and Sentences." In Proc. of IJCNLP-05, 2005.
[11]
Larocca, J. N. 1, Santos, A. D. S, Kaestner, C. A. A. e Freitas A. A. (2000). "Generating Text Summaries through the Relative Importance of Topics. "Lecture Notes in Computer Science Springer Berlin / Heidelberg Volume 1952/2000, ISSN0302-9743 (Print) 1611--3349 (Online) pp 300, 2000, Brazil.
[12]
Luhn, H. P. (1958). "The automatic creation of literature abstracts.".IBM Journal of Research and Development, 2, pp. 159--165.
[13]
Magalhães, T. M. V. (2006). "O Sistema Pronominal Sujeito e Objeto na Aquisição do Português Europeu e do Português Brasileiro". Tese de Doutorado, UNICAMP.
[14]
Mittal, V. O., Kantrowitz, M., Goldstein, J., Carbonell, J. G.(1999) "Selecting Text Spans For Document Summaries: Heuristics And Metrics", In Aaai/Iaai (1999), Pp. 467--473.
[15]
Pardo, T. A. S.; Espina, A. P.; Rino, L. H. M.; Martins, C. B.;(2001). "Introdução à Sumarização Automática." Tech. Report RT-DC 002/2001, Departamento de Computação, Universidade Federal de São Carlos. Abril. 38p.
[16]
Pardo, T. A. S.; Rino, L. H. M.; Martins (2003). "TeMário: Um Corpus para Sumarização Automática de Textos." Série de Relatórios do Núcleo Interinstitucional de Lingüística Computacional, NILC - ICMC-USP, Outubro de 2003.
[17]
Pardo, T. A. S.; Rino, L. H. M.; Martins (2006) "A Coleção TeMário e a Avaliação de Sumarização Automática." Série de Relatórios do Núcleo Interinstitucional de Lingüística Computacional, NILC - ICMC-USP, Janeiro de 2006.
[18]
Rabiner, L. R.; Juang, B. H. (1986), "An introduction to hidden Markov models", IEEE ASSP Magazine, Vol. 3(1), pp. 4--16.
[19]
Riloff, E.; Wiebe, J.; Phillips, W. (2005). "Exploiting Subjectivity Classification to Improve Information Extraction", Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-05).
[20]
Salton, G.; Buckley, C. (1988). "Term-weighting Approaches in Automatic Text Retrieval." Information Processing and Management 24, pp. 513--523.

Index Terms

  1. Todas as palavras da sentença como métrica para um sumarizador automático

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WebMedia '08: Companion Proceedings of the XIV Brazilian Symposium on Multimedia and the Web
    October 2008
    420 pages
    ISBN:9788576691990
    DOI:10.1145/1809980

    Sponsors

    • SBC: Brazilian Computer Society

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 October 2008

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. automatic compression
    2. automatic summarizer
    3. pragmatic profile

    Qualifiers

    • Research-article

    Conference

    WebMedia08
    Sponsor:
    • SBC
    WebMedia08: 14th Brazilian Symposium on Multimedia and Web Systems
    October 26 - 29, 2008
    Espírito Santo, Vila Velha, Brazil

    Acceptance Rates

    Overall Acceptance Rate 270 of 873 submissions, 31%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 65
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 08 Mar 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media