skip to main content
10.1145/1811158.1811174acmconferencesArticle/Chapter ViewAbstractPublication PagesafrigraphConference Proceedingsconference-collections
research-article

Dynamic load balancing of Lattice Boltzmann free-surface fluid animations

Published:21 June 2010Publication History

ABSTRACT

We investigate the use of dynamic load balancing for more efficient parallel Lattice Boltzmann Method (LBM) Free Surface simulations. Our aim is to produce highly detailed fluid simulations with large grid sizes and without the use of optimisation techniques, such as adaptive grids, which may impact on simulation quality. We divide the problem into separate simulation chunks, which can then be distributed over multiple parallel processors. Due to the purely local grid interaction of the LBM, the algorithm parallelises well. However, the highly dynamic nature of typical scenes means that there is an unbalanced distribution of the fluid across the processors. Our proposed Dynamic Load Balancing strategy seeks to improve the efficiency of the simulation by measuring computation and communication times and adjusting the fluid distribution accordingly.

References

  1. Amati, G., Succi, S., and Piva, R. 1997. Massively Parallel Lattice-Boltzmann Simulation of Turbulent Channel Flow. International Journal of Modern Physics C 8, 869--877.Google ScholarGoogle ScholarCross RefCross Ref
  2. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3, 377--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chalmers, A., Davis, T., and Reinhard, E. 2002. Practical parallel rendering. AK Peters, Ltd. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chen, J. X., and da Vitoria Lobo, N. 1995. Toward interactive-rate simulation of fluids with moving obstacles using navier-stokes equations. Graph. Models Image Process. 57, 2, 107--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dachsel, H., Hofmann, M., and Raunger, G. 2007. Library support for parallel sorting in scientific computations. In Euro-Par 2007 Parallel Processing, Springer Berlin Heidelberg, vol. 4641 of Lecture Notes in Computer Science, 695--704. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Desplat, J.-C., Pagonabarraga, I., and Bladon, P. 2001. LUDWIG: A parallel Lattice-Boltzmann code for complex fluids. Computer Physics Communications 134 (Mar.), 273--290.Google ScholarGoogle Scholar
  7. d'Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., and Luo, L.-S. 2002. Multiple-relaxationtime lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437--451.Google ScholarGoogle ScholarCross RefCross Ref
  8. Fan, Z., Qiu, F., Kaufman, A., and Yoakum-Stover, S. 2004. GPU cluster for high performance computing. In Proceedings of the 2004 ACM/IEEE conference on Supercomputing, IEEE Computer Society Washington, DC, USA, 47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fattal, R., and Lischinski, D. 2004. Target-driven smoke animation. In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA, 441--448. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, New York, NY, USA, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gropp, W., Lusk, E., and Skjellum, A. 1999. Using MPI: Portable Parallel Programming with the Message Passing Interface. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gustafson, J. 1988. Reevaluating Amdahl's law. Communications of the ACM 31, 5, 532--533. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Harlow, F. H., and Welch, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 8, 12, 2182--2189.Google ScholarGoogle ScholarCross RefCross Ref
  16. Higuera, F. J., Succi, S., and Benzi, R. 1989. Lattice gas dynamics with enhanced collisions. Europhysics Letters 9 (June), 345-+.Google ScholarGoogle ScholarCross RefCross Ref
  17. Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, ACM Press, New York, NY, USA, 805--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kandhai, D., Koponen, A., Hoekstra, A. G., Kataja, M., Timonen, J., and Sloot, P. M. A. 1998. Lattice-Boltzmann hydrodynamics on parallel systems. Computer Physics Communications 111 (June), 14--26.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In SIGGRAPH '90: Proceedings of the 17th annual conference on Computer graphics and interactive techniques, ACM Press, New York, NY, USA, 49--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Keiser, R., Adams, B., Guibas, L. J., Dutri, P., and Pauly, M. 2006. Multiresolution particle-based fluids. Tech. rep., ETH CS.Google ScholarGoogle Scholar
  21. Körner, C., and Singer, R. F. 2000. Processing of metal foams - challenges and opportunities. Advanced Engineering Materials 2, 4, 159--165.Google ScholarGoogle ScholarCross RefCross Ref
  22. Körner, C., Thies, M., and Singer, R. 2002. Modeling of metal foaming with lattice boltzmann automata. Advanced engineering materials(Print) 4, 10.Google ScholarGoogle Scholar
  23. Körner, C., Pohl, T., Thürey, N., and Zeiser, T. 2006. Parallel Lattice Boltzmann Methods for CFD Applications, vol. 51. Springer Berlin Heidelberg.Google ScholarGoogle Scholar
  24. Lorensen, W. E., and Cline, H. E. 1987. Marching cubes: A high resolution 3d surface construction algorithm. SIGGRAPH Comput. Graph. 21, 4, 163--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled sph and particle level set fluid simulation. IEEE Transactions on Visualization and Computer Graphics 14, 4, 797--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mohr, B., Brown, D., and Malony, A. 1994. TAU: A Portable Parallel Program Analysis Environment for pC++. LECTURE NOTES IN COMPUTER SCIENCE, 29--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle-based simulation of fluids. Eurographics 2003 22, 3.Google ScholarGoogle Scholar
  30. Reid, A. 2009. Parallel fluid dynamics for the film and animation industries. Master's thesis, University of Cape Town.Google ScholarGoogle Scholar
  31. Shankar, M., and Sundar, S. 2009. Asymptotic analysis of extrapolation boundary conditions for lbm. Comput. Math. Appl. 57, 8, 1313--1323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stam, J. 1999. Stable fluids. In SIGGRAPH '99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Succi, S. 2001. The Lattice Boltzmann Euqation for fluid dynamics and beyond. Oxford University Press, New York.Google ScholarGoogle Scholar
  34. Thuerey, N., 2008. Free surface flows with lbm, October. http://www.vgtc.org/PDF/slides/2008/visweek/tutorial8_thuerey.pdf.Google ScholarGoogle Scholar
  35. Thurey, N., Korner, C., and Rude, U. 2005. Interactive Free Surface Fluids with the Lattice Boltzmann Method. Tech. rep., Technical Report 05-4. Technical report, Department of Computer Science 10 System Simulation, 2005.Google ScholarGoogle Scholar
  36. Thürey, N., Pohl, T., Rüde, U., Öchsner, M., and Körner, C. 2006. Optimization and stabilization of LBM free surface flow simulations using adaptive parameterization. Computers and Fluids 35, 8--9, 934--939.Google ScholarGoogle ScholarCross RefCross Ref
  37. Thürey, N., Pohl, T., and Rüde, U. 2007. Hybrid Parallelization Techniques for Lattice Boltzmann Free Surface Flows. International Conference on Parallel Computational Fluid Dynamics (May).Google ScholarGoogle Scholar
  38. Thürey, N. 2003. A single-phase free-surface Lattice-Boltzmann Method. Master's thesis, FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG.Google ScholarGoogle Scholar
  39. Thurey, N. 2007. Physically based Animation of Free Surface Flows with the Lattice Boltzmann Method. PhD thesis, Technischen Fakultat der Universitat Erlangen-Nurnberg.Google ScholarGoogle Scholar
  40. Wang, J., Zhang, X., Bengough, A. G., and Crawford, J. W. 2005. Domain-decomposition method for parallel lattice boltzmann simulation of incompressible flow in porous media. Physical Review E (Statistical, Non-linear, and Soft Matter Physics) 72, 1, 016706.Google ScholarGoogle Scholar
  41. Wei, X., Zhao, Y., Fan, Z., Li, W., Yoakum-Stover, S., and Kaufman, A. 2003. Blowing in the wind. In SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 75--85. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Dynamic load balancing of Lattice Boltzmann free-surface fluid animations

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          AFRIGRAPH '10: Proceedings of the 7th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa
          June 2010
          153 pages
          ISBN:9781450301183
          DOI:10.1145/1811158

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 June 2010

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate47of90submissions,52%
        • Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader