skip to main content
10.1145/1815330.1815340acmotherconferencesArticle/Chapter ViewAbstractPublication PagesdasConference Proceedingsconference-collections
research-article

Context-aware and content-based dynamic Voronoi page segmentation

Published: 09 June 2010 Publication History

Abstract

This paper presents a dynamic approach to document page segmentation based on inter-component relationships, local patterns and context features. State-of-the art page segmentation algorithms segment zones based on local properties of neighboring connected components such as distance and orientation, and do not typically consider additional properties other than size. Our proposed approach uses a contextually aware and dynamically adaptive page segmentation scheme. The page is first over-segmented using a dynamically adaptive scheme of separation features based on [2] and adapted from [13]. A decision to form zones is then based on the context built from these local separation features and high-level content features. Zone-based evaluation was performed on sets of printed and handwritten documents in English and Arabic scripts with multiple font types, sizes and we achieved an increase of 15% over the accuracy reported in [2].

References

[1]
W. Abd Almageed, M. Agrawal, W. Seo, and D. Doermann. Document-zone classification using partial least squares and hybrid classifiers. Int'l Conf. on Patt. Reco., pages 1--4, 2008.
[2]
M. Agrawal and D. Doermann. Voronoi++: A dynamic page segmentation approach based on voronoi and docstrum features. In Proc. 10th Int'l Conf. on Doc. Analysis and Reco., pages 1011--1015, 2009.
[3]
A. Antonacopoulos and R. Ritchings. Flexible page segmentation using the background. In Proc. 12th Int'l Conf. on Patt. Reco., volume 2, pages 339--344, Oct 1994.
[4]
H. S. Baird. Background structure in document images. In Advances in Structural and Syntactic Pattern Recognition, pages 17--34. World Scientific, 1994.
[5]
T. M. Breuel. Two geometric algorithms for layout analysis. In Workshop on Document Analysis Systems, pages 188--199. Springer-Verlag, 2002.
[6]
V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent contour segments for object detection. IEEE Trans. Patt. Anal. Mach. Intell., 30(1):36--51, 2008.
[7]
L. A. Fletcher and R. Kasturi. A robust algorithm for text string separation from mixed text/graphics images. IEEE Trans. Pattern Anal. Mach. Intell., 10(6):910--918, 1988.
[8]
I. Guyon, R. M. Haralick, J. J. Hull, and I. T. Phillips. Data sets for ocr and document image understanding research. In Proc. of SPIE - Document Recognition IV, pages 779--799. World Scientific, 1997.
[9]
F. Hones and J. Lichter. Layout extraction of mixed-mode documents. Mach. Vision Appl., 7(4):237--246, 1994.
[10]
A. Jain and Y. Zhong. Page segmentation using texture analysis. Patt. Reco., 29(5):743--770, May 1996.
[11]
A. K. Jain and S. Bhattacharjee. Text segmentation using gabor filters for automatic document processing. Mach. Vision Appl., 5(3):169--184, 1992.
[12]
N. Kato, M. Suzuki, S. Omachi, H. Aso, and Y. Nemoto. A handwritten character recognition system using directional element feature and asymmetric mahalanobis distance. IEEE Trans. Patt. Anal. Mach. Intell., 21(3):258--262, 1999.
[13]
K. Kise, A. Sato, and M. Iwata. Segmentation of page images using the area voronoi diagram. Comput. Vis. Image Underst., 70(3):370--382, 1998.
[14]
D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int'l J. Comput. Vision, 60(2):91--110, 2004.
[15]
S. J. M. Roth and D. Doermann. Gedi: Ground truth. editor and document interface. In Summit on Arabic and Chinese Handwriting Recognition, 2006.
[16]
S. Mao and T. Kanungo. Automatic training of page segmentation algorithms: An optimization approach. In Proc. of Int'l Conf. on Patt. Reco., pages 531--534, 2000.
[17]
G. Nagy, S. Seth, and M. Viswanathan. A prototype document image analysis system for technical journals. Computer, 25(7):10--22, 1992.
[18]
N. Normand and C. Viard-Gaudin. A background based adaptive page segmentation algorithm. In Proc. 3rd Int'l Conf. on Doc. Analysis and Reco., page 138, Washington, DC, USA, 1995. IEEE Computer Society.
[19]
L. O'Gorman. The document spectrum for page layout analysis. IEEE Trans. Patt. Anal. Mach. Intell., 15(11):1162--1173, 1993.
[20]
T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell., 24(7):971--987, 2002.
[21]
T. Pavlidis and J. Zhou. Page segmentation and classification. CVGIP: Graph. Models Image Process., 54(6):484--496, 1992.
[22]
I. Sekita, R. Mori, K. Yamamoto, H. Yamada, and K. Toraichi. Feature extraction of handwritten japanese characters by spline functions for relaxation matching. Patt. Reco., 21(1):9--17, 1988.
[23]
W. Seo, M. Agrawal, and D. Doermann. Performance evaluation tools for zone segmentation and classification (PETS). Int'l Conf. on Patt. Reco., 2010.
[24]
F. Shafait, D. Keysers, and T. M. Breuel. Performance comparison of six algorithms for page segmentation. In 7th IAPR Workshop on Document Analysis Systems, pages 368--379. Springer, 2006.
[25]
Y. Wang, I. T. Phillips, and R. M. Haralick. Document zone content classification and its performance evaluation. Patt. Reco., 39(1):57--73, 2006.
[26]
K. Y. Wong, R. G. Casey, and F. M. Wahl. Document Analysis System. j-IBM-JRD, 26(6):647--656, Nov. 1982.

Cited By

View all
  • (2021)Text Block Segmentation in Comic Speech BubblesPattern Recognition. ICPR International Workshops and Challenges10.1007/978-3-030-68780-9_22(250-261)Online publication date: 25-Feb-2021
  • (2019)Applications of Distributed Ledger Technologies to the Internet of ThingsACM Computing Surveys10.1145/335998252:6(1-34)Online publication date: 14-Nov-2019
  • (2019)A Survey of Coarse-Grained Reconfigurable Architecture and DesignACM Computing Surveys10.1145/335737552:6(1-39)Online publication date: 16-Oct-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
DAS '10: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems
June 2010
490 pages
ISBN:9781605587738
DOI:10.1145/1815330
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 June 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Voronoi
  2. Voronoi tessellation
  3. context driven
  4. page segmentation
  5. unsupervised classification

Qualifiers

  • Research-article

Funding Sources

Conference

DAS '10

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Text Block Segmentation in Comic Speech BubblesPattern Recognition. ICPR International Workshops and Challenges10.1007/978-3-030-68780-9_22(250-261)Online publication date: 25-Feb-2021
  • (2019)Applications of Distributed Ledger Technologies to the Internet of ThingsACM Computing Surveys10.1145/335998252:6(1-34)Online publication date: 14-Nov-2019
  • (2019)A Survey of Coarse-Grained Reconfigurable Architecture and DesignACM Computing Surveys10.1145/335737552:6(1-39)Online publication date: 16-Oct-2019
  • (2019)Document Layout AnalysisACM Computing Surveys10.1145/335561052:6(1-36)Online publication date: 16-Oct-2019
  • (2019)Survey of Compressed Domain Video Summarization TechniquesACM Computing Surveys10.1145/335539852:6(1-29)Online publication date: 16-Oct-2019
  • (2019)A Survey of Metaprogramming LanguagesACM Computing Surveys10.1145/335458452:6(1-39)Online publication date: 16-Oct-2019
  • (2019)A Survey on Representation Learning Efforts in Cybersecurity DomainACM Computing Surveys10.1145/333117452:6(1-28)Online publication date: 16-Oct-2019
  • (2017)A comprehensive survey of mostly textual document segmentation algorithms since 2008Pattern Recognition10.1016/j.patcog.2016.10.02364:C(1-14)Online publication date: 1-Apr-2017
  • (2016)From Image to XMLHuman-Computer Interaction10.4018/978-1-4666-8789-9.ch063(1295-1318)Online publication date: 2016
  • (2014)From Image to XMLInternational Journal of Monitoring and Surveillance Technologies Research10.4018/ijmstr.20140101022:1(22-43)Online publication date: 1-Jan-2014
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media