skip to main content
research-article

MLD2P4: A Package of Parallel Algebraic Multilevel Domain Decomposition Preconditioners in Fortran 95

Published: 01 September 2010 Publication History

Abstract

Domain decomposition ideas have long been an essential tool for the solution of PDEs on parallel computers. In recent years many research efforts have been focused on recursively employing domain decomposition methods to obtain multilevel preconditioners to be used with Krylov solvers. In this context, we developed MLD2P4 (MultiLevel Domain Decomposition Parallel Preconditioners Package based on PSBLAS), a package of parallel multilevel preconditioners that combines additive Schwarz domain decomposition methods with a smoothed aggregation technique to build a hierarchy of coarse-level corrections in an algebraic way. The design of MLD2P4 was guided by objectives such as extensibility, flexibility, performance, portability, and ease of use. They were achieved by following an object-based approach while using the Fortran 95 language, as well as by employing the PSBLAS library as a basic framework. In this article, we present MLD2P4 focusing on its design principles, software architecture, and use.

References

[1]
}}Aprovitola, A., D’Ambra, P., Denaro, F., di Serafino, D., and Filippone, S. 2010. Scalable algebraic multilevel preconditioners with application to CFD. In Proceedings of the 20th International Conference on Parallel Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol. 14, Springer-Verlag, Berlin. To appear.
[2]
}}Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., Curfman McInnes, L., Smith, B. F., and Zhang, H. 2007. PETSc users manual. Tech. rep. ANL-95/11 - revision 2.3.3, Argonne National Laboratory, Argonne, II. (See also http://www.mcs.anl.gov/petsc/petsc-as/.)
[3]
}}Bank, R. E. and Douglas, C. C. 1993. Sparse matrix multiplication package (SMMP). Adv. Comput. Math. 1, 1, 127--137.
[4]
}}Brandt, A. 1977. Multi-Level adaptive solutions to boundary value problems. Math. Comput. 31, 333--390.
[5]
}}Brandt, A. 2002. Multiscale scientific computation: Review 2001. In Multiscale and Multiresolution Methods: Theory and Applications, T. J. Barth, T. Chan, and R. Haimes, Eds., Lecture Notes in Computational Science and Engineering. vol. 20, Springer-Verlag, Berlin, 1--96.
[6]
}}Brezina, M. and Vaněk, P. 1999. A black-box iterative solver based on a two-level Schwarz method. Comput. 63, 3, 233--263.
[7]
}}Buttari, A., D’Ambra, P., di Serafino, D., and Filippone, S. 2006. Extending PSBLAS to build parallel Schwarz preconditioners. In Applied Parallel Computing, J. Dongarra, K. Madsen, and J. Wasniewski, Eds. Lecture Notes in Computer Science, vol. 3732. Springer-Verlag, Berlin, Germany, 593--602.
[8]
}}Buttari, A., D’Ambra, P., di Serafino, D., and Filippone, S. 2007a. 2LEV-D2P4: A package of high-performance preconditioners for scientific and engineering applications. Appl. Algebra Engin. Comm. Comput. 18, 3, 223--239.
[9]
}}Buttari, A., Eijkhout, V., Langou, J., and Filippone, S. 2007b. Performance optimization and modeling of blocked sparse kernels. Int. J. High Perf. Comput. Appl. 21, 4, 467--484.
[10]
}}Cai, X.-C. and Saad, Y. 1996. Overlapping domain decomposition algorithms for general sparse matrices. Numer. Linear Algebra Appl. 3, 3, 221--237.
[11]
}}Cai, X.-C. and Sarkis, M. 1999. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 2, 792--797.
[12]
}}Chan, T. F. and Mathew, T. P. 1994. Domain decomposition algorithms. In Acta numerica, 1994. Acta Numer. Cambridge University Press, Cambridge, UK, 61--143.
[13]
}}D’Ambra, P., di Serafino, D., and Filippone, S. 2007. On the development of PSBLAS-based parallel two-level Schwarz preconditioners. Appl. Numer. Math. 57, 11-12, 1181--1196.
[14]
}}D’Ambra, P., di Serafino, D., and Filippone, S. 2009. MLD2P4 User’s and Reference Guide. http://www.mld2p4.it.
[15]
}}Davis, T. A. 2004. Algorithm 832: UMFPACK V4.3---An unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 2, 196--199.
[16]
}}Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., and Liu, J. W. H. 1999a. A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20, 3, 720--755.
[17]
}}Demmel, J. W., Gilbert, J. R., and Li, X. S. 1999b. An asynchronous parallel supernodal algorithm for sparse Gaussian elimination. SIAM J. Matrix Anal. Appl. 20, 4, 915--952.
[18]
}}Dongarra, J. J. and Whaley, R. C. 1997. A user’s guide to the blacs v1.1. Tech. rep., LAPACK working note 94. http://www.netlib.org/blacs/lawn94.ps.
[19]
}}Duff, I. S., Heroux, M. A., and Pozo, R. 2002. An overview of the sparse basic linear algebra subprograms: The new standard from the BLAS technical forum. ACM Trans. Math. Softw. 28, 2, 239--267.
[20]
}}Duff, I. S., Marrone, M., Radicati, G., and Vittoli, C. 1997. Level 3 basic linear algebra subprograms for sparse matrices: A user-level interface. ACM Trans. Math. Softw. 23, 3, 379--401.
[21]
}}Efstathiou, E. and Gander, M. J. 2003. Why restricted additive Schwarz converges faster than additive Schwarz. BIT 43, 945--959.
[22]
}}Falgout, R. D. 2006. An introduction to algebraic multigrid. Comput. Sci. Engin. 8, 3, 24--33.
[23]
}}Falgout, R. D., Jones, J. E., and Yang, U. M. 2006. The design and implementation of hypre, a library of parallel high performance preconditioners. In Numerical Solution of Partial Differential Equations on Parallel Computers. Lecture Notes Computer Science Engineering, vol. 51. Springer-Verlag, Berlin, Germany, 267--294. (See also https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html.)
[24]
}}Filippone, S. and Buttari, A. 2008. PSBLAS: User’s and Reference Guide. http://www.ce.uniroma2.it/psblas/.
[25]
}}Filippone, S. and Colajanni, M. 2000. PSBLAS: A library for parallel linear algebra computation on sparse matrices. ACM Trans. Math. Softw. 26, 4, 527--550. (See also http://www.ce.uniroma2.it/psblas/.)
[26]
}}Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns. Addison-Wesley.
[27]
}}Gee, M. W., Siefert, C. M., Hu, J. J., Tuminaro, R. S., and Sala, M. G. 2006. ML 5.0 smoothed aggregation user’s guide. Tech. rep. SAND2006-2649, Sandia National Laboratories, Albuquerque, NM, and Livermore, CA.
[28]
}}Göddeke, D., Strzodka, R., Jamaludin, M.-Y., M c Cormick, P., Wobker, H., Becker, C., and Turek, S. 2008. Using GPUs to improve multigrid solver performance on a cluster. Int. J. Comput. Sci. Engin. 4, 36--55.
[29]
}}Henson, V. E. and Yang, U. M. 2000. BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155--177.
[30]
}}Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T., Salinger, A. G., Thornquist, H. K., Tuminaro, R. S., Willenbring, J. M., Williams, A., and Stanley, K. S. 2005. An overview of the Trilinos project. ACM Trans. Math. Softw. 31, 3, 397--423.
[31]
}}Keyes, D. 2003. Domain decomposition methods in the mainstream of computational science. In Proceedings of the 14th International Conference on Domain Decomposition Methods. UNAM Press, 79--93.
[32]
}}Keyes, D. E., Saad, Y., and Truhlar, D. G. 1995. Think globally, act locally: An introduction to domain-based parallelism and problem decomposition methods. In Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering, D. E. Keyes, Y. Saad, and D. G. Truhlar, Eds. SIAM, Philadelphia, PA.
[33]
}}Mandel, J., Brezina, M., and Vaněk, P. 1999. Energy optimization of algebraic multigrid bases. Comput. 62, 3, 205--228.
[34]
}}Saad, Y. 2003. Iterative Methods for Sparse Linear Systems, 2nd Ed. Society for Industrial and Applied Mathematics, Philadelphia, PA.
[35]
}}Saad, Y. and Sosonkina, M. 2004. pARMS: A package for the parallel iterative solution of general large sparse linear systems user’s guide. Tech. rep. UMSI2004-8, Minnesota Supercomputing Institute, Minneapolis, MN.
[36]
}}Sala, M. and Tuminaro, R. S. 2008. A new Petrov-Galerkin smoothed aggregation precondiioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 31, 1, 143--166.
[37]
}}Simpson, A. D., Bull, M., and Hill, J. 2008. Identification and categorisation of applications and initial benchmarks suite. http://www.prace-project.eu/documents/Identification_and_ Categorisatio_of_Applications_and_Initial_Benchmark_ Suite_final.pdf.
[38]
}}Smith, B. F., Bjørstad, P. E., and Gropp, W. D. 1996. Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge, UK.
[39]
}}Snir, M., Otto, S., Huss-Lederman, S., Walker, D. W., and Dongarra, J. J. 1998. MPI: The Complete Reference. Vol. 1 -- The MPI Core, 2nd Ed. Scientific and Engineering Computation. The MIT Press, Cambridge, MA.
[40]
}}Stitt, T. and Robinson, T. 2008. A survey on training and education needs for petascale computing. http://www.prace-project.eu/documents/D3.3.1_document_final.pdf.
[41]
}}Stüben, K. 1999. Algebraic multigrid (AMG): An introduction with applications. Tech. rep. 70, GMD, Schloss Birlinghoven, Sankt Augustin, Germany.
[42]
}}Tuminaro, R. S., Heroux, M. A., Hutchinson, S. A., and Shadid, J. N. 1999. Official Aztec user’s guide - version 2.1. (See also http://www.cs.sandia.gov/CRF/aztec1.html.)
[43]
}}Tuminaro, R. S. and Tong, C. 2000. Parallel smoothed aggregation multigrid: Aggregation strategies on massively parallel machines. In Proceedings of the ACM/IEEE Conference on Supercomputing. CDROM, Dallas, TX.
[44]
}}Vaněk, P., Mandel, J., and Brezina, M. 1996. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Comput. 56, 3, 179--196.

Cited By

View all
  • (2024)Alya toward exascale: algorithmic scalability using PSCToolkitThe Journal of Supercomputing10.1007/s11227-024-05989-y80:10(13533-13556)Online publication date: 1-Jul-2024
  • (2023)A Multi-GPU Aggregation-Based AMG Preconditioner for Iterative Linear SolversIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.328723834:8(2365-2376)Online publication date: 1-Aug-2023
  • (2023)Parallel Sparse Computation ToolkitSoftware Impacts10.1016/j.simpa.2022.100463(100463)Online publication date: Jan-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 37, Issue 3
September 2010
296 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/1824801
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 September 2010
Accepted: 01 May 2010
Revised: 01 January 2010
Received: 01 March 2009
Published in TOMS Volume 37, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Mathematics of computing
  2. algebraic multilevel
  3. domain decomposition
  4. object-based design
  5. parallel preconditioners

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Alya toward exascale: algorithmic scalability using PSCToolkitThe Journal of Supercomputing10.1007/s11227-024-05989-y80:10(13533-13556)Online publication date: 1-Jul-2024
  • (2023)A Multi-GPU Aggregation-Based AMG Preconditioner for Iterative Linear SolversIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2023.328723834:8(2365-2376)Online publication date: 1-Aug-2023
  • (2023)Parallel Sparse Computation ToolkitSoftware Impacts10.1016/j.simpa.2022.100463(100463)Online publication date: Jan-2023
  • (2020)BootCMatchG: An adaptive Algebraic MultiGrid linear solver for GPUsSoftware Impacts10.1016/j.simpa.2020.100041(100041)Online publication date: Nov-2020
  • (2019)Efficient Algebraic Multigrid Preconditioners on Clusters of GPUsParallel Processing Letters10.1142/S012962641950001429:01(1950001)Online publication date: 10-May-2019
  • (2017)Solving mixed classical and fractional partial differential equations using short---memory principle and approximate inversesNumerical Algorithms10.1007/s11075-016-0186-874:4(1061-1082)Online publication date: 1-Apr-2017
  • (2016)Sparse approximate inverse preconditioners on high performance GPU platformsComputers & Mathematics with Applications10.1016/j.camwa.2015.12.00871:3(693-711)Online publication date: 1-Feb-2016
  • (2016)A parallel generalized relaxation method for high-performance image segmentation on GPUsJournal of Computational and Applied Mathematics10.1016/j.cam.2015.04.035293:C(35-44)Online publication date: 1-Feb-2016
  • (2015)Reprint of Solution of Ambrosio–Tortorelli model for image segmentation by generalized relaxation methodCommunications in Nonlinear Science and Numerical Simulation10.1016/j.cnsns.2014.10.01821:1-3(225-237)Online publication date: Apr-2015
  • (2015)Solution of Ambrosio–Tortorelli model for image segmentation by generalized relaxation methodCommunications in Nonlinear Science and Numerical Simulation10.1016/j.cnsns.2014.06.03620:3(819-831)Online publication date: Mar-2015
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media