skip to main content
10.1145/1830761.1830902acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Evolving neural networks

Published: 07 July 2010 Publication History

Abstract

Neuroevolution, i.e. evolution of artificial neural networks, has recently emerged as a powerful technique for solving challenging reinforcement learning problems. Compared to traditional (e.g. value-function based) methods, neuroevolution is especially strong in domains where the state of the world is not fully known: the state can be disambiguated through recurrency, and novel situations handled through pattern matching. In this tutorial, we will review (1) neuroevolution methods that evolve fixed-topology networks, network topologies, and network construction processes, (2) ways of combinine traditional neural network learning algorithms with evolutionary methods, and (3) applications of neuroevolution to game playing, robot control, resource optimization, and cognitive science.

References

[1]
A. Agogino, K. Tumer, and R. Miikkulainen, Efficient credit assignment through evaluation function decomposition http://nn.cs.utexas.edu/keyword?agogino:gecco05, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).
[2]
R. Aharonov-Barki, T. Beker, and E. Ruppin, Emergence of memory-Driven command neurons in evolved artificial agents, Neural Computation, 13(3):691--716 (2001).
[3]
P. J. Angeline, G. M. Saunders, and J. B. Pollack, An evolutionary algorithm that constructs recurrent neural networks, IEEE Transactions on Neural Networks, 5:54--65 (1994).
[4]
J. M. Baldwin, A new factor in evolution, The American Naturalist, 30:441--451, 536--553 (1896).
[5]
R. K. Belew, Evolution, learning and culture: Computational metaphors for adaptive algorithms, Complex Systems, 4:11--49 (1990).
[6]
B. D. Bryant and R. Miikkulainen, Neuroevolution for adaptive teams http://nn.cs.utexas.edu/keyword?bryant:cec03, in: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), volume 3, 2194--2201, IEEE, Piscataway, NJ (2003).
[7]
B. D. Bryant and R. Miikkulainen, Acquiring visibly intelligent behavior with example-guided neuroevolution http://nn.cs.utexas.edu/keyword?bryant:aaai07, in: Proceedings of the Twenty-Second National Conference on Artificial Intelligence, 801--808, AAAI Press, Menlo Park, CA (2007).
[8]
D. J. Chalmers, The evolution of learning: An experiment in genetic connectionism, in: Touretzky et al. 90, 81--90.
[9]
K. Chellapilla and D. B. Fogel, Evolution, neural networks, games, and intelligence, Proceedings of the IEEE, 87:1471--1496 (1999).
[10]
C.-C. Chen and R. Miikkulainen, Creating melodies with evolving recurrent neural networks http://nn.cs.utexas.edu/keyword?chen:ijcnn01, in: Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, 2241--2246, IEEE, Piscataway, NJ (2001).
[11]
D. Cliff, I. Harvey, and P. Husbands, Explorations in evolutionary robotics, Adaptive Behavior, 2:73--110 (1993).
[12]
J. Clune, C. Ofria, and R. T. Pennock, The sensitivity of hyperneat to different geometric representations of a problem https://www.msu.edu/jclune/webfiles/publications/Clune-HyperNEATSensitivi%tyToGeometry.pdf, in: Proceedings of the Genetic and Evolutionary Computation Conference (2009).
[13]
R. Cornelius, K. O. Stanley, and R. Miikkulainen, Constructing adaptive AI using knowledge-based neuroevolution http://nn.cs.utexas.edu/keyword?cornelius:wisdom06, in: AI Game Programming Wisdom 3, S. Rabin, ed., 693--708, Charles River Media, Revere, MA (2006).
[14]
D. B. D'Ambrosio and K. O. Stanley, A novel generative encoding for exploiting neural network sensor and output geometry, in: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO '07), 974--981, ACM, New York, NY, USA (2007).
[15]
D. B. D'Ambrosio and K. O. Stanley, Generative encoding for multiagent learning, in: Proceedings of the Genetic and Evolutionary Computation Conference (2008).
[16]
N. S. Desai and R. Miikkulainen, Neuro-evolution and natural deduction http://nn.cs.utexas.edu/keyword?desai:ecnn00, in: Proceedings of The First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, 64--69, IEEE, Piscataway, NJ (2000).
[17]
G. Dubbin and K. O. Stanley, Learning to dance through interactive evolution, in: Proceedings of the Eighth European Event on Evolutionary and Biologically Inspired Music, Sound, Art and Design, Springer, Berlin (2010).
[18]
J. Fan, R. Lau, and R. Miikkulainen, Utilizing domain knowledge in neuroevolution http://nn.cs.utexas.edu/keyword?fan:icml03, in: Machine Learning: Proceedings of the 20th Annual Conference (2003).
[19]
D. Floreano, P. Dürr, and C. Mattiussi, Neuroevolution: From architectures to learning, Evolutionary Intelligence, 1:47--62 (2008).
[20]
D. Floreano and F. Mondada, Evolutionary neurocontrollers for autonomous mobile robots, Neural Networks, 11:1461--1478 (1998).
[21]
D. B. Fogel, phBlondie24: Playing at the Edge of AI, Morgan Kaufmann, San Francisco (2001).
[22]
D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, Further evolution of a self-learning chess program, in: Proceedings of the IEEE Symposium on Computational Intelligence and Games, IEEE, Piscataway, NJ (2005).
[23]
B. Fullmer and R. Miikkulainen, Using marker-based genetic encoding of neural networks to evolve finite-state behaviour http://nn.cs.utexas.edu/keyword?fullmer:evolving, in: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, F. J. Varela and P. Bourgine, eds., 255--262, MIT Press, Cambridge, MA (1992).
[24]
J. J. Gauci and K. O. Stanley, A case study on the critical role of geometric regularity in machine learning, in: Proceedings of the Twenty-Third National Conference on Artificial Intelligence, AAAI Press, Menlo Park, CA (2008).
[25]
F. Gomez, Robust Non-Linear Control Through Neuroevolution, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin (2003).
[26]
F. Gomez, D. Burger, and R. Miikkulainen, A neuroevolution method for dynamic resource allocation on a chip multiprocessor http://nn.cs.utexas.edu/keyword?gomez:ijcnn01, in: Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, 2355--2361, IEEE, Piscataway, NJ (2001).
[27]
F. Gomez and R. Miikkulainen, Incremental evolution of complex general behavior http://nn.cs.utexas.edu/keyword?gomez:ab97, Adaptive Behavior, 5:317--342 (1997).
[28]
F. Gomez and R. Miikkulainen, Active guidance for a finless rocket using neuroevolution http://nn.cs.utexas.edu/keyword?gomez:gecco03, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2084--2095, Morgan Kaufmann, San Francisco (2003).
[29]
F. Gomez, J. Schmidhuber, and R. Miikkulainen, Accelerated neural evolution through cooperatively coevolved synapses http://nn.cs.utexas.edu/keyword?gomez:jmlr08, Journal of Machine Learning Research, 9:937--965 (2008).
[30]
B. Greer, H. Hakonen, R. Lahdelma, and R. Miikkulainen, Numerical optimization with neuroevolution http://nn.cs.utexas.edu/keyword?greer:cec02, in: Proceedings of the 2002 Congress on Evolutionary Computation, 361--401, IEEE, Piscataway, NJ (2002).
[31]
F. Gruau and D. Whitley, Adding learning to the cellular development of neural networks: Evolution and the Baldwin effect, Evolutionary Computation, 1:213--233 (1993).
[32]
E. J. Hastings, R. K. Guha, and K. O. Stanley, Automatic content generation in the galactic arms race video game, IEEE Transactions on Computational Intelligence and AI in Games, 1:245--263 (2009).
[33]
G. E. Hinton and S. J. Nowlan, How learning can guide evolution, Complex Systems, 1:495--502 (1987).
[34]
A. K. Hoover, M. P. Rosario, and K. O. Stanley, Scaffolding for interactively evolving novel drum tracks for existing songs, in: Proceedings of the Sixth European Workshop on Evolutionary and Biologically Inspired Music, Sound, Art and Design, Springer, Berlin (2008).
[35]
G. S. Hornby, S. Takamura, J. Yokono, O. Hanagata, M. Fujita, and J. Pollack, Evolution of controllers from a high-level simulator to a high DOF robot, in: Evolvable Systems: From Biology to Hardware; Proceedings of the Third International Conference, 80--89, Springer, Berlin (2000).
[36]
C. Igel, Neuroevolution for reinforcement learning using evolution strategies http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/igel/NfRLUES.pdf%, in: Proceedings of the 2003 Congress on Evolutionary Computation, R. Sarker, R. Reynolds, H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, eds., 2588--2595, IEEE Press, Piscataway, NJ (2003).
[37]
A. Keinan, B. Sandbank, C. C. Hilgetag, I. Meilijson, and E. Ruppin, Axiomatic scalable neurocontroller analysis via the Shapley value, Artificial Life, 12:333--352 (2006).
[38]
N. Kohl and R. Miikkulainen, Evolving neural networks for strategic decision-making problems http://nn.cs.utexas.edu/keyword?kohl:nn09, Neural Networks, 22:326--337 (2009).
[39]
N. Kohl, K. O. Stanley, R. Miikkulainen, M. Samples, and R. Sherony, Evolving a real-world vehicle warning system http://nn.cs.utexas.edu/keyword?kohl:gecco06, in: Proceedings of the Genetic and Evolutionary Computation Conference (2006).
[40]
J. Lehman and K. O. Stanley, Efficiently evolving programs through the search for novelty, in: Proceedings of the Genetic and Evolutionary Computation Conference (2010).
[41]
J. Lehman and K. O. Stanley, Revising the evolutionary computation abstraction: Minimal criteria novelty search, in: Proceedings of the Genetic and Evolutionary Computation Conference (2010).
[42]
Y. Liu, X. Yao, and T. Higuchi, Evolutionary ensembles with negative correlation learning, IEEE Transactions on Evolutionary Computation, 4:380--387 (2000).
[43]
A. J. Lockett, C. L. Chen, and R. Miikkulainen, Evolving explicit opponent models in game playing http://nn.cs.utexas.edu/keyword?lockett:gecco07, in: Proceedings of the Genetic and Evolutionary Computation Conference (2007).
[44]
R. Maclin and J. W. Shavlik, Creating advice-taking reinforcement learners, Machine Learning, 22(1-3):251--281 (1996).
[45]
J. R. McDonnell and D. Waagen, Evolving recurrent perceptrons for time-series modeling, IEEE Transactions on Evolutionary Computation, 5:24--38 (1994).
[46]
P. McQuesten, Cultural Enhancement of Neuroevolution http://nn.cs.utexas.edu/keyword?mcquesten:phd02, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX (2002). Technical Report AI-02--295.
[47]
R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O. Stanley, and C. H. Yong, Computational intelligence in games http://nn.cs.utexas.edu/keyword?miikkulainen:cigames06, in: Computational Intelligence: Principles and Practice, G. Y. Yen and D. B. Fogel, eds., IEEE Computational Intelligence Society, Piscataway, NJ (2006).
[48]
E. Mjolsness, D. H. Sharp, and B. K. Alpert, Scaling, machine learning, and genetic neural nets, Advances in Applied Mathematics, 10:137--163 (1989).
[49]
G. Monroy, K. O. Stanley, and R. Miikkulainen, Coevolution of neural networks using a layered pareto archive http://nn.cs.utexas.edu/keyword?monroy:gecco06, in: Proceedings of the Genetic and Evolutionary Computation Conference (2006).
[50]
D. J. Montana and L. Davis, Training feedforward neural networks using genetic algorithms, in: Proceedings of the 11th International Joint Conference on Artificial Intelligence, 762--767, San Francisco: Morgan Kaufmann (1989).
[51]
D. E. Moriarty, Symbiotic Evolution of Neural Networks in Sequential Decision Tasks http://nn.cs.utexas.edu/keyword?moriarty:phd, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin (1997). Technical Report UT-AI97--257.
[52]
D. E. Moriarty and R. Miikkulainen, Evolving obstacle avoidance behavior in a robot arm http://nn.cs.utexas.edu/keyword?moriarty:sab96, in: From Animals to Animats 4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior, P. Maes, M. J. Mataric, J.-A. Meyer, J. Pollack, and S. W. Wilson, eds., 468--475, Cambridge, MA: MIT Press (1996).
[53]
D. E. Moriarty and R. Miikkulainen, Forming neural networks through efficient and adaptive co-evolution http://nn.cs.utexas.edu/keyword?moriarty:ec97, Evolutionary Computation, 5:373--399 (1997).
[54]
D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, Evolutionary algorithms for reinforcement learning, Journal of Artificial Intelligence Research, 11:199--229 (1999).
[55]
S. Nolfi, J. L. Elman, and D. Parisi, Learning and evolution in neural networks, Adaptive Behavior, 2:5--28 (1994).
[56]
S. Nolfi and D. Floreano, phEvolutionary Robotics, MIT Press, Cambridge (2000).
[57]
S. Nolfi and D. Parisi, Good teaching inputs do not correspond to desired responses in ecological neural networks http://kant.irmkant.rm.cnr.it/econets/nolfi.evo-teach.ps.Z, Neural Processing Letters, 1(2):1--4 (1994).
[58]
D. Pardoe, M. Ryoo, and R. Miikkulainen, Evolving neural network ensembles for control problems http://nn.cs.utexas.edu/keyword?pardoe:gecco05, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).
[59]
M. A. Potter and K. A. D. Jong, Cooperative coevolution: An architecture for evolving coadapted subcomponents http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db= &dopt=%abstract&list_uids=10753229, Evolutionary Computation, 8:1--29 (2000).
[60]
J. Reisinger and R. Miikkulainen, Acquiring evolvability through adaptive representations http://nn.cs.utexas.edu/keyword?reisinger:gecco07, in: Proceeedings of the Genetic and Evolutionary Computation Conference, 1045--1052 (2007).
[61]
J. Reisinger, K. O. Stanley, and R. Miikkulainen, Evolving reusable neural modules http://nn.cs.utexas.edu/keyword?reisinger:gecco04, in: Proceedings of the Genetic and Evolutionary Computation Conference, 69--81 (2004).
[62]
C. D. Rosin and R. K. Belew, New methods for competitive coevolution, phEvolutionary Computation, 5:1--29 (1997).
[63]
T. P. Runarsson and M. T. Jonsson, Evolution and design of distributed learning rules, in: Proceedings of The First IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks, 59--63, IEEE, Piscataway, NJ (2000).
[64]
E. Ruppin, Evolutionary autonomous agents: A neuroscience perspective http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=retrieve&db= &dopt=%abstract&list_uids=11836521, Nature Reviews Neuroscience (2002).
[65]
J. D. Schaffer, D. Whitley, and L. J. Eshelman, Combinations of genetic algorithms and neural networks: A survey of the state of the art, in: Proceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks, D. Whitley and J. Schaffer, eds., 1--37, IEEE Computer Society Press, Los Alamitos, CA (1992).
[66]
J. Schrum and R. Miikkulainen, Evolving multi-modal behavior in npcs http://nn.cs.utexas.edu/keyword?schrum:cig09, in: Proceedings of the IEEE Symposium on Computational Intelligence and Games, IEEE, Piscataway, NJ (2009).
[67]
J. Schrum and R. Miikkulainen, Evolving agent behavior in multiobjective domains using fitness-based shaping http://nn.cs.utexas.edu/keyword?schrum:gecco10, in: Proceedings of the Genetic and Evolutionary Computation Conference (2010).
[68]
J. Secretan, N. Beato, D. B. D'Ambrosio, A. Rodriguez, A. Campbell, and K. O. Stanley, Picbreeder: Evolving pictures collaboratively online, in: Proceedings of Computer Human Interaction Conference, ACM, New York (2008).
[69]
C. W. Seys and R. D. Beer, Evolving walking: The anatomy of an evolutionary search, in: phFrom Animals to Animats 8: Proceedings of the Eight International Conference on Simulation of Adaptive Behavior, S. Schaal, A. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam, and J.-A. Meyer, eds., 357--363, MIT Press, Cambridge, MA (2004).
[70]
A. A. Siddiqi and S. M. Lucas, A comparison of matrix rewriting versus direct encoding for evolving neural networks, in: Proceedings of IEEE International Conference on Evolutionary Computation, 392--397, IEEE, Piscataway, NJ (1998).
[71]
Y. F. Sit and R. Miikkulainen, Learning basic navigation for personal satellite assistant using neuroevolution http://nn.cs.utexas.edu/keyword?sit:gecco05, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).
[72]
K. O. Stanley, Efficient Evolution of Neural Networks Through Complexification http://nn.cs.utexas.edu/keyword?stanley:phd04, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin, Austin, TX (2003).
[73]
K. O. Stanley, B. D. Bryant, and R. Miikkulainen, Real-time neuroevolution in the NERO video game http://nn.cs.utexas.edu/keyword?stanley:ieeetec05, IEEE Transactions on Evolutionary Computation, 9(6):653--668 (2005).
[74]
K. O. Stanley and R. Miikkulainen, Evolving neural networks through augmenting topologies http://nn.cs.utexas.edu/keyword?stanley:ec02, Evolutionary Computation, 10:99--127 (2002).
[75]
K. O. Stanley and R. Miikkulainen, A taxonomy for artificial embryogeny http://nn.cs.utexas.edu/keyword?stanley:alife03, Artificial Life, 9(2):93--130 (2003).
[76]
K. O. Stanley and R. Miikkulainen, Competitive coevolution through evolutionary complexification http://nn.cs.utexas.edu/keyword?stanley:jair04, Journal of Artificial Intelligence Research, 21:63--100 (2004).
[77]
K. O. Stanley and R. Miikkulainen, Evolving a roving eye for Go http://nn.cs.utexas.edu/keyword?stanley:gecco04, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004), Springer Verlag, Berlin (2004).
[78]
D. G. Stork, S. Walker, M. Burns, and B. Jackson, Preadaptation in neural circuits, in: International Joint Conference on Neural Networks (Washington, DC), 202--205, IEEE, Piscataway, NJ (1990).
[79]
M. Taylor, S. Whiteson, and P. Stone, Comparing evolutionary and temporal difference methods in a reinforcement learning domain, in: Proceedings of the Genetic and Evolutionary Computation Conference (2006).
[80]
J. Togelius and S. M. Lucas, Evolving robust and specialized car racing skills http://algoval.essex.ac.uk/rep/games/Togelius2006Evolving.pdf, in: IEEE Congress on Evolutionary Computation, 1187--1194, IEEE, Piscataway, NJ (2006).
[81]
D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, eds., Proceedings of the 1990 Connectionist Models Summer School, San Francisco: Morgan Kaufmann (1990).
[82]
J. Urzelai, D. Floreano, M. Dorigo, and M. Colombetti, Incremental robot shaping, Connection Science, 10:341--360 (1998).
[83]
V. Valsalam and R. Miikkulainen, Evolving symmetric and modular neural networks for distributed control http://nn.cs.utexas.edu/keyword?valsalam:gecco09, in: Proceedings of the Genetic and Evolutionary Computation Conference, 731--738 (2009).
[84]
V. K. Valsalam and R. Miikkulainen, Modular neuroevolution for multilegged locomotion http://nn.cs.utexas.edu/keyword?valsalam:gecco08, in: Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2008, 265--272, ACM, New York, NY, USA (2008).
[85]
A. van Eck Conradie, R. Miikkulainen, and C. Aldrich, Adaptive control utilising neural swarming http://nn.cs.utexas.edu/keyword?conradie:gecco02, in: Proceedings of the Genetic and Evolutionary Computation Conference, W. B. Langdon, E. Cantú-Paz, K. E. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. K. Burke, and N. Jonoska, eds., 60--67, San Francisco: Morgan Kaufmann (2002).
[86]
A. van Eck Conradie, R. Miikkulainen, and C. Aldrich, Intelligent process control utilizing symbiotic memetic neuro-evolution http://nn.cs.utexas.edu/keyword?conradie:cec02, in: Proceedings of the 2002 Congress on Evolutionary Computation, 623--628 (2002).
[87]
G. M. Werner and M. G. Dyer, Evolution of communication in artificial organisms, in: Proceedings of the Workshop on Artificial Life (ALIFE '90), C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, eds., 659--687, Reading, MA: Addison-Wesley (1992).
[88]
G. M. Werner and M. G. Dyer, Evolution of herding behavior in artificial animals, in: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, J.-A. Meyer, H. L. Roitblat, and S. W. Wilson, eds., Cambridge, MA: MIT Press (1992).
[89]
S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone, Evolving keepaway soccer players through task decomposition http://nn.cs.utexas.edu/keyword?whiteson:mlj05, Machine Learning, 59:5--30 (2005).
[90]
S. Whiteson and P. Stone, Evolutionary function approximation for reinforcement learning http://www.cs.utexas.edu/pstone/Papers/bib2html/b2hd-JMLR06.html, Journal of Machine Learning Research, 7:877--917 (2006).
[91]
S. Whiteson, P. Stone, K. O. Stanley, R. Miikkulainen, and N. Kohl, Automatic feature selection in neuroevolution http://nn.cs.utexas.edu/keyword?whiteson:gecco05, in: Proceedings of the Genetic and Evolutionary Computation Conference (2005).
[92]
S. Whiteson and D. Whiteson, Stochastic optimization for collision selection in high energy physics http://www.cs.utexas.edu/shimon/pubs/b2hd-whitesoniaai07.html, in: Proceedings of the Nineteenth Annual Innovative Applications of Artificial Intelligence Conference (2007).
[93]
D. Whitley, S. Dominic, R. Das, and C. W. Anderson, Genetic reinforcement learning for neurocontrol problems, Machine Learning, 13:259--284 (1993).
[94]
A. P. Wieland, Evolving controls for unstable systems, in: Touretzky et al. 90, 91--102.
[95]
X. Yao, Evolving artificial neural networks, Proceedings of the IEEE, 87(9):1423--1447 (1999).
[96]
C. H. Yong and R. Miikkulainen, Cooperative coevolution of multi-agent systems http://nn.cs.utexas.edu/keyword?yong:utcstr07, Technical Report AI07-338, Department of Computer Sciences, The University of Texas at Austin (2007).
[97]
C. H. Yong, K. O. Stanley, R. Miikkulainen, and I. Karpov, Incorporating advice into neuroevolution of adaptive agents http://nn.cs.utexas.edu/keyword?yong:aiide06, in: Proceedings of the Second Artificial Intelligence and Interactive Digital Entertainment Conference, 98--104, AAAI Press, Menlo Park, CA (2006).

Cited By

View all
  • (2023)Synthetic Slowness Shear Well-Log Prediction Using Supervised Machine Learning ModelsArtificial Intelligence and Soft Computing10.1007/978-3-031-23492-7_11(115-130)Online publication date: 24-Jan-2023
  • (2011)Automatic design of Neural Networks with L-Systems and genetic algorithms - A biologically inspired methodologyThe 2011 International Joint Conference on Neural Networks10.1109/IJCNN.2011.6033360(1199-1206)Online publication date: Jul-2011

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '10: Proceedings of the 12th annual conference companion on Genetic and evolutionary computation
July 2010
1496 pages
ISBN:9781450300735
DOI:10.1145/1830761

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 July 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. evolutionary computation
  2. neural networks

Qualifiers

  • Tutorial

Conference

GECCO '10
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)1
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Synthetic Slowness Shear Well-Log Prediction Using Supervised Machine Learning ModelsArtificial Intelligence and Soft Computing10.1007/978-3-031-23492-7_11(115-130)Online publication date: 24-Jan-2023
  • (2011)Automatic design of Neural Networks with L-Systems and genetic algorithms - A biologically inspired methodologyThe 2011 International Joint Conference on Neural Networks10.1109/IJCNN.2011.6033360(1199-1206)Online publication date: Jul-2011

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media