skip to main content
research-article
Free access

Nonparametric belief propagation

Published: 01 October 2010 Publication History

Abstract

Continuous quantities are ubiquitous in models of real-world phenomena, but are surprisingly difficult to reason about automatically. Probabilistic graphical models such as Bayesian networks and Markov random fields, and algorithms for approximate inference such as belief propagation (BP), have proven to be powerful tools in a wide range of applications in statistics and artificial intelligence. However, applying these methods to models with continuous variables remains a challenging task. In this work we describe an extension of BP to continuous variable models, generalizing particle filtering, and Gaussian mixture filtering techniques for time series to more complex models. We illustrate the power of the resulting nonparametric BP algorithm via two applications: kinematic tracking of visual motion and distributed localization in sensor networks.

References

[1]
}}Alspach, D.L. and Sorenson, H.W. Nonlinear Bayesian estimation using Gaussian sum approximations, Morgan Kaufmann. IEEE Trans. AC 17, 4 (Aug. 1972), 439--448.
[2]
}}Anderson, B.D.O., Moore, J.B. Optimal Filtering. Prentice Hall, New Jersey, 1979.
[3]
}}Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I. An introduction to MCMC for machine learning. Mach. Learn. 50 (2003), 5--43.
[4]
}}Baron, D., Sarvotham, S., Baraniuk, R.G. Bayesian compressive sensing via belief propagation. IEEE Trans. Sig. Proc. 58, 1 (2010), 269--280.
[5]
}}Briers, M., Doucet, A., Singh, S.S. Sequential auxiliary particle belief propagation. In ICIF (2005), 705--711.
[6]
}}Cappé, O., Godsill, S.J., Moulines, E. An overview of existing methods and recent advances in sequential Monte Carlo. Proc. IEEE 95, 5 (May 2007), 899--924.
[7]
}}Coughlan, J., Shen, H. Dynamic quantization for belief propagation in sparse spaces. Comput. Vis. Image Underst. 106, 1 (2007), 47--58.
[8]
}}Coughlan, J.M., Ferreira, S.J. Finding deformable shapes using loopy belief propagation. In ECCV, vol. 3, (2002), 453--468.
[9]
}}Dawid, A.P., Kjærulff, U., Lauritzen, S.L. Hybrid propagation in junction trees. In Advances in Intelligent Computing (1995), 87--97.
[10]
}}Del Moral, P. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer-Verlag, New York, 2004.
[11]
}}Doucet, A., de Freitas, N., Gordon, N., eds. Sequential Monte Carlo Methods in Practice. Springer-Verlag, New York, 2001.
[12]
}}Driver, E., Morrell, D. Implementation of continuous Bayesian networks using sums of weighted Gaussians. In UAI (1995), 134--140.
[13]
}}Felzenszwalb, P.F., Huttenlocher, D.P. Pictorial structures for object recognition. IJCV 61, 1 (2005), 55--79.
[14]
}}Freeman, W.T., Pasztor, E.C., Carmichael, O.T. Learning low-level vision. IJCV 40, 1 (2000), 25--47.
[15]
}}Frey, B.J., MacKay, D.J.C. A revolution: Belief propagation in graphs with cycles. In NIPS 10 (1998), MIT Press, 479--485.
[16]
}}Gogate, V., Dechter, R. AND/OR importance sampling. In UAI (2008), 212--219.
[17]
}}Grimes, D.B., Rashid, D.R., Rao, R.P. Learning nonparametric models for probabilistic imitation. In NIPS (2007), MIT Press, 521--528.
[18]
}}Hamze, F., de Freitas, N. Hot coupling: A particle approach to inference and normalization on pairwise undirected graphs of arbitrary topology. In NIPS 18 (2006), MIT Press, 491--498.
[19]
}}Han, T.X., Ning, H., Huang, T.S. Efficient nonparametric belief propagation with application to articulated body tracking. In CVPR (2006), 214--221.
[20]
}}Heskes, T. On the uniqueness of loopy belief propagation fixed points. Neural Comp. 16 (2004), 2379--2413.
[21]
}}Ihler, A., McAllester, D. Particle belief propagation. In AI Stat. 12 (2009).
[22]
}}Ihler, A.T., Fisher, J.W., Moses, R.L., Willsky, A.S. Nonparametric belief propagation for self-localization of sensor networks. IEEE J. Sel. Areas Commun. 23, 4 (Apr. 2005), 809--819.
[23]
}}Ihler, A.T., Fisher, J.W., Willsky, A.S. Loopy belief propagation: Convergence and effects of message errors. JMLR 6 (2005), 905--936.
[24]
}}Ihler, A.T., Frank, A.J., Smyth, P. Particle-based variational inference for continuous systems. In NIPS 22 (2009), 826--834.
[25]
}}Ihler, A.T., Sudderth, E.B., Freeman, W.T., Willsky, A.S. Efficient multiscale sampling from products of Gaussian mixtures. In NIPS 16 (2004), MIT Press.
[26]
}}Isard, M. PAMPAS: Real-valued graphical models for computer vision. In CVPR, vol. 1 (2003), 613--620.
[27]
}}Isard, M., MacCormick, J., Achan, K. Continuously-adaptive discretization for message-passing algorithms. In NIPS (2009), MIT Press, 737--744.
[28]
}}Jordan, M.I. Graphical models. Stat. Sci. 19, 1 (2004), 140--155.
[29]
}}Koller, D., Lerner, U., Angelov, D. A general algorithm for approximate inference and its application to hybrid Bayes nets. In UAI 15 (1999), Morgan Kaufmann, 324--333.
[30]
}}Kschischang, F.R., Frey, B.J., Loeliger, H.-A. Factor graphs and the sum-product algorithm. IEEE Trans. IT 47, 2 (Feb. 2001), 498--519.
[31]
}}Kurkoski, B., Dauwels, J. Message-passing decoding of lattices using Gaussian mixtures. In ISIT (July 2008).
[32]
}}Lee, T.S., Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20, 7 (July 2003), 1434--1448.
[33]
}}Moeslund, T.B., Hilton, A., Kruger, V. A survey of advances in vision-based human motion capture and analysis. Comput. Vision Image Underst. 104 (2006), 90--126.
[34]
}}Mooij, J.M., Kappen, H.J. Sufficient conditions for convergence of the sum-product algorithm. IEEE Trans. IT 53, 12 (Dec. 2007), 4422--4437.
[35]
}}Neal, R.M., Beal, M.J., Roweis, S.T. Inferring state sequences for non-linear systems with embedded hidden Markov models. In NIPS 16 (2004), MIT Press.
[36]
}}Neil, M., Tailor, M., Marquez, D. Inference in hybrid Bayesian networks using dynamic discretization. Stat. Comput. 17, 3 (2007), 219--233.
[37]
}}Pearl, J. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo, 1988.
[38]
}}Rajaram, S., Gupta, M.D., Petrovic, N., Huang, T.S. Learning-based nonparametric image super-resolution. EURASIP J. Appl. Signal Process. (2006), 229--240.
[39]
}}Rudoy, D. Wolf, P.J. Multi-scale MCMC methods for sampling from products of Gaussian mixtures. In ICASSP, vol. 3 (2007), III-1201--III-1204.
[40]
}}Seeger M. Gaussian process belief propagation. In Predicting structured data (2007), 301--318.
[41]
}}Sigal, L., Bhatia, S., Roth, S., Black, M.J., Isard, M. Tracking loose-limbed people. In CVPR (2004).
[42]
}}Silverman, B.W. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London, 1986.
[43]
}}Sommer, N., Feder, M., Shalvi, O. Low-density lattice codes. IEEE Trans. Info. Theory 54, 4 (2008), 1561--1585.
[44]
}}Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S. Nonparametric belief propagation. In CVPR, vol. 1 (2003), 605--612.
[45]
}}Sudderth, E.B., Mandel, M.I., Freeman, W.T., Willsky, A.S. Visual hand tracking using nonparametric belief propagation. In CVPR Workshop on Generative Model Based Vision (June 2004).
[46]
}}Sun, W., Cetin, M., Chan, R., Willsky., A.S. Learning the dynamics and time-recursive boundary detection of deformable objects. IEEE Trans. IP 17, 11 (Nov. 2008), 2186--2200.
[47]
}}Wainwright, M.J., Jordan, M.I. Graphical models, exponential families, and variational inference. Foundations Trends Mach. Learn. 1, (2008), 1--305.
[48]
}}Wu, Y., Huang, T.S. Hand modeling, analysis, and recognition. IEEE Signal Proc. Mag. (May 2001), 51--60.
[49]
}}Yanover, C., Weiss, Y. Approximate inference and protein-folding. In NIPS 16 (2003), MIT Press, 1457--1464.
[50]
}}Yedidia, J.S., Freeman, W.T., Weiss, Y. Understanding belief propagation and its generalizations. In G. Lakemeyer and B. Nebel, eds. Exploring Artificial Intelligence in the New Millennium. Morgan Kaufmann, 2002.
[51]
}}Yedidia, J.S., Freeman, W.T., Weiss, Y. Constructing free energy approximations and generalized belief propagation algorithms. IEEE Trans. IT 51, 7 (July 2005), 2282--2312.

Cited By

View all
  • (2025)The Harmonic Exponential Filter for Nonparametric Estimation on Motion GroupsIEEE Robotics and Automation Letters10.1109/LRA.2025.352734610:2(2096-2103)Online publication date: Feb-2025
  • (2024)Line-of-Sight Visual Target Tracking via Particle-Based Belief Propagation2024 American Control Conference (ACC)10.23919/ACC60939.2024.10644307(4339-4344)Online publication date: 10-Jul-2024
  • (2024)Peak detection in intracranial pressure signal waveforms: a comparative studyBioMedical Engineering OnLine10.1186/s12938-024-01245-923:1Online publication date: 24-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Communications of the ACM
Communications of the ACM  Volume 53, Issue 10
October 2010
96 pages
ISSN:0001-0782
EISSN:1557-7317
DOI:10.1145/1831407
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 October 2010
Published in CACM Volume 53, Issue 10

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article
  • Popular
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)507
  • Downloads (Last 6 weeks)154
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)The Harmonic Exponential Filter for Nonparametric Estimation on Motion GroupsIEEE Robotics and Automation Letters10.1109/LRA.2025.352734610:2(2096-2103)Online publication date: Feb-2025
  • (2024)Line-of-Sight Visual Target Tracking via Particle-Based Belief Propagation2024 American Control Conference (ACC)10.23919/ACC60939.2024.10644307(4339-4344)Online publication date: 10-Jul-2024
  • (2024)Peak detection in intracranial pressure signal waveforms: a comparative studyBioMedical Engineering OnLine10.1186/s12938-024-01245-923:1Online publication date: 24-Jun-2024
  • (2024)A Particle Fusion Approach for Distributed Filtering and SmoothingUnmanned Systems10.1142/S230138502441010312:02(277-291)Online publication date: 12-Jan-2024
  • (2024)Stein Variational Belief Propagation for Multi-Robot CoordinationIEEE Robotics and Automation Letters10.1109/LRA.2024.33757089:5(4194-4201)Online publication date: May-2024
  • (2023)Gaussian Mixture Reduction With Composite Transportation DivergenceIEEE Transactions on Information Theory10.1109/TIT.2023.332334670:7(5191-5212)Online publication date: 10-Oct-2023
  • (2023)Cooperative localization for master–salve multi-AUVs based on range measurementsPhysical Communication10.1016/j.phycom.2023.10221761(102217)Online publication date: Dec-2023
  • (2022)A hybrid cooperative navigation method for UAV swarm based on factor graph and Kalman filterInternational Journal of Distributed Sensor Networks10.1177/1550147721106475818:1(155014772110647)Online publication date: 25-Jan-2022
  • (2022)Non-Parametric Belief Propagation Solver for Stochastic Systems of Linear EquationsIEEE Transactions on Magnetics10.1109/TMAG.2022.315976058:9(1-4)Online publication date: Sep-2022
  • (2022)Multihypothesis Gaussian Belief Propagation for Radio Ranging-Based Localization and MappingIEEE Transactions on Instrumentation and Measurement10.1109/TIM.2022.318042571(1-13)Online publication date: 2022
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

EPUB

View this article in ePub.

ePub

Digital Edition

View this article in digital edition.

Digital Edition

Magazine Site

View this article on the magazine site (external)

Magazine Site

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media