skip to main content
10.1145/1835804.1835864acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Negative correlations in collaboration: concepts and algorithms

Authors Info & Claims
Published:25 July 2010Publication History

ABSTRACT

This paper studies efficient mining of negative correlations that pace in collaboration. A collaborating negative correlation is a negative correlation between two sets of variables rather than traditionally between a pair of variables. It signifies a synchronized value rise or fall of all variables within one set whenever all variables in the other set go jointly at the opposite trend. The time complexity is exponential in mining. The high efficiency of our algorithm is attributed to two factors: (i) the transformation of the original data into a bipartite graph database, and (ii) the mining of transpose closures from a wide transactional database. Applying to a Yeast gene expression data, we evaluate, by using Pearson's correlation coefficient and P-value, the biological relevance of collaborating negative correlations as an example among many real-life domains.

Skip Supplemental Material Section

Supplemental Material

kdd2010_liu_ncc_01.mov

mov

118.1 MB

References

  1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items in large databases. In SIGMOD, pages 207--216, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. J. S. Aguilar-Ruiz. Shifting and scaling patterns from gene expression data. Bioinformatics, 21(20):3840--3845, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ashburner et al . Gene ontology: tool for the unification of biology. Nature Genetics, 25(1):25--29, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cherry et al. SGD: Saccharomyces genome database. Nucl. Acids Res., 26(1):73--79, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  5. Cho et al . A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell, 2(1):65--73, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  6. Chuang et al . A pattern recognition approach to infer time-lagged genetic interactions. Bioinformatics, 24(9):1183--1190, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol, 3(2):185--205, April 2005.Google ScholarGoogle ScholarCross RefCross Ref
  8. G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent itemsets. In B. Goethals and M. J. Zaki, editors, FIMI, volume 90 of CEUR Workshop Proceedings. CEUR-WS.org, 2003.Google ScholarGoogle Scholar
  9. G. Grahne and J. Zhu. Fast algorithms for frequent itemset mining using fp-trees. IEEE TKDE, 17(10):1347--1362, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. James et al. Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy. Molecular Biology of the Cell, 16(11):5316--5333, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  11. L. Ji and K.-L. Tan. Mining gene expression data for positive and negative co-regulated gene clusters. Bioinformatics, 20(16):2711--2718, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. Koch, S. Schonauer, I. Jansen, J. van den Bussche, and T. Burzykowski. Finding clusters of positive and negative coregulated genes in gene expression data. In BIBE, page 93--99, 2007.Google ScholarGoogle Scholar
  13. Lee et al. High-resolution analysis of condition-specific regulatory modules in saccharomyces cerevisiae. Genome Biology, 9:R2.1--R2.21, 2008.Google ScholarGoogle Scholar
  14. S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM TCBB, 1(1):24--45, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. S. C. Madeira and A. L. Oliveira. A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series. Algorithms for Molecular Biology, 4(8), 2009.Google ScholarGoogle Scholar
  16. Y. Matsuo and H. Yamamoto. Community gravity: measuring bidirectional e ects by trust and rating on online social networks. In Quemada et al., editor, WWW, pages 751{760. ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. C. Missero, M. T. Pirro, and R. Di Lauro. Multiple ras downstream pathways mediate functional repression of the homeobox gene product TTF-1. Molecular and Cellular Biology, 20(8):2783--2793, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  18. L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl., 6(1):90--105, June 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Pasquier et al. Discovering frequent closed itemsets for association rules. In ICDT'99, pages 398--416, London, UK, 1999. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Santos et al. Zinc suppresses the iron-accumulation phenotype of saccharomyces cerevisiae lacking the yeast frataxin homologue (yfh1). Biochem. J., 375:247--254, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  21. Schmid et al . A gene expression map of arabidopsis thaliana development. Nature Genetics, 37(5):501--506, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  22. S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Addison-Wesley, MA, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Spellman et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9(12):3273--3297, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  24. D. J. Stekel and D. J. Jenkins. Strong negative self regulation of prokaryotic transcription factors increases the intrinsic noise of protein expression. BMC Systems Biology, 2(6), 2008.Google ScholarGoogle Scholar
  25. M. D. Stern. The power of low-correlation investing. http://www.nysscpa.org/cpajournal/2003/1103/features/f114203.htm, Last accessed time: Jan, 2010.Google ScholarGoogle Scholar
  26. Vandeputte et al. A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of candida glabrata. Antimicrobial Agents and Chemotherapy, 52(10):3701--3709, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Veen, U. Stahl, and C. Lang. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in saccharomyces cerevisiae. FEMS Yeast Research, 4(1):87--95, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  28. Wu et al. Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency. JBC Papers in Press, 284(40):27544--56, 2009.Google ScholarGoogle Scholar
  29. X. Xu, Y. Liu, A. Tung, and W. Wang. Mining shifting-and-scaling co-regulation patterns on gene expression profiles. In ICDE, pages 89--98, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. T. Zeng and J. Li. Maximization of negative correlations in time-course gene expression data for enhancing understanding of molecular pathways. Nucl. Acids Res., 38(1):gkp822+, January 2010.Google ScholarGoogle Scholar

Index Terms

  1. Negative correlations in collaboration: concepts and algorithms

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      KDD '10: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining
      July 2010
      1240 pages
      ISBN:9781450300551
      DOI:10.1145/1835804

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 July 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate1,133of8,635submissions,13%

      Upcoming Conference

      KDD '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader