skip to main content
10.1145/1837934.1837963acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Decomposition of generic multivariate polynomials

Published:25 July 2010Publication History

ABSTRACT

We consider the composition f =g o h of two systems g= (g0, ..., gt) and h=(h0, ..., hs) of homogeneous multivariate polynomials over a field K, where each gj ∈ K[y0, ..., ys] has degree ℓ each hk ∈ K[x0, ..., xr] has degree m, and fi = gi(h0, ..., hs) ∈ K[x0, ..., xr] has degree n = ℓ · m, for 0 ≤ i ≤ t. The motivation of this paper is to investigate the behavior of the decomposition algorithm Multi-ComPoly proposed at ISSAC'09 [18]. We prove that the algorithm works correctly for generic decomposable instances -- in the special cases where ℓ is 2 or 3, and m is 2 -- and investigate the issue of uniqueness of a generic decomposable instance. The uniqueness is defined w.r.t. the "normal form" of a multivariate decomposition, a new notion introduced in this paper, which is of independent interest.

References

  1. V. S. Alagar and M. Thanh. Fast Polynomial Decomposition Algorithms. In Proc. EUROCAL85, Lecture Notes in Computer Science, vol. 204, pp. 150--153, Springer--Verlag, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie. Thèse de doctorat, Université de Paris VI, 2004.Google ScholarGoogle Scholar
  3. M. Bardet, J-C. Faugère, and B. Salvy. On the Complexity of Gröbner Basis Computation of Semi-Regular Overdetermined Algebraic Equations. In Proc. of International Conference on Polynomial System Solving (ICPSS), pp. 71--75, 2004.Google ScholarGoogle Scholar
  4. M. Bardet, J-C. Faugère, B. Salvy and B-Y. Yang. Asymptotic Behaviour of the Degree of Regularity of Semi-Regular Polynomial Systems. In Proc. of MEGA 2005, Eighth International Symposium on Effective Methods in Algebraic Geometry, 2005.Google ScholarGoogle Scholar
  5. D. R. Barton and R. E. Zippel. Polynomial decomposition algorithms. J. Symb. Comp., 1, pp. 159--168, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. B. Buchberger. An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal (German), PhD Thesis, University of Innsbruck, Math. Institute, Austria, 1965. (English Translation: J. S. C., Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41 (3--4), pp 475--511, 2006).Google ScholarGoogle Scholar
  7. B. Buchberger. Ein algorithmisches Kriterium fur die Lšsbarkeit eines algebraischen Gleichungssystems (An Algorithmical Criterion for the Solvability of Algebraic Systems of Equations) Aequationes mathematicae 4/3, 1970, pp. 374--383. (English translation in: B. Buchberger, F. Winkler (eds.), Gröbner Bases and Applications, Proc. of the International Conference "33 Years of Gröbner Bases", 1998, RISC, Austria, London Mathematical Society Lecture Note Series, Vol. 251, Cambridge University Press, 1998, pp. 535--545.)Google ScholarGoogle Scholar
  8. B. Buchberger. Gröbner Bases: an Algorithmic Method in Polynomial Ideal Theory. Recent trends in multidimensional systems theory. Reider ed. Bose, 1985.Google ScholarGoogle Scholar
  9. B. Buchberger, G.-E. Collins, and R. Loos. Computer Algebra Symbolic and Algebraic Computation. Springer-Verlag, second edition, 1982. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. E.-W. Chionh, X.-S. Gao, L.-Y. Shen. Inherently Improper Surface Parametric Supports. Computer Aided Geometric Design 23 (2006), pp. 629--639. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. A. Cox, J. B. Little, and D. O'Shea. Ideals, Varieties, and Algorithms: an Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics. Springer-Verlag. New York, 1992.Google ScholarGoogle Scholar
  12. M. Dickerson. The functional Decomposition of Polynomials. Ph.D Thesis, TR 89-1023, Departement of Computer Science, Cornell University, Ithaca, NY, July 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. Dickerson. General Polynomial Decomposition and the s-l-decomposition are NP-hard. International Journal of Foundations of Computer Science, 4:2 (1993), pp. 147--156.Google ScholarGoogle ScholarCross RefCross Ref
  14. F. Dorey and G. Whaples. Prime and composite polynomials. J. Algebra,(28), pp. 88--101, 1974.Google ScholarGoogle Scholar
  15. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Basis without Reduction to Zero: F5 . Proceedings of ISSAC, pp. 75--83. ACM press, July 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J.-C. Faugère, L. Perret. Cryptanalysis of 2R- schemes. Advances in Cryptology -- CRYPTO 2006, Lecture Notes in Computer Science, vol. 4117, pp. 357--372, Springer--Verlag, 2006.Google ScholarGoogle Scholar
  17. J.-C. Faugère, L. Perret. An Efficient Algorithm for Decomposing Multivariate Polynomials and its Applications to Cryptography. Special Issue of JSC, "Gröbner Bases techniques in Coding Theory and Cryptography", on-line available. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. J.-C. Faugère, L. Perret. High order derivatives and decomposition of multivariate polynomials. Proceedings of ISSAC, pp. 207--214. ACM press, July 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. Fröberg. An inequality for Hilbert series of graded algebras. Math. Scand., 56(2) :117--144, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. von zur Gathen. The number of decomposable univariate polynomials. Proceedings of ISSAC, pp. 359--366. ACM press, July 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. von zur Gathen. Functional decomposition of polynomials: the tame case. J. Symb. Comput. (9), pp. 281--299, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. von zur Gathen. Functional decomposition of polynomials: the wild case. J. Symb. Comput. (10), pp. 437--452, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. von zur Gathen, J. Gutierrez, R. Rubio. Multivariate Polynomial Decomposition. Applicable Algebra in Engineering, Communication and Computing, 14 (1), pp. 11--31, 2003.Google ScholarGoogle Scholar
  24. J. Gutierrez, D. Sevilla. Computation of Unirational fields. J. Symb. Comput. 41(11), pp. 1222--1244, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  25. J. Gutierrez, R. Rubio, D. Sevilla. On Multivariate Rational Function Decomposition. J. Symb. Comput. 33(5), pp. 545--562, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. D. Kozen, and S. Landau. Polynomial Decomposition Algorithms. J. Symb. Comput. (7), pp. 445--456, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. F. Ritt. Prime and Composite Polynomials. Trans. Amer. Math. Soc., (23), pp 51--66, 1922.Google ScholarGoogle Scholar
  28. M. Sweedler. Using Gröbner Bases to Determine the Algebraic and Transcendental Nature of Field Extensions: Return of the Killer Tag Variables. Proc. AAECC, 66--75, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. M. Watt. Functional Decomposition of Symbolic Polynomials. In Proc. International Conference on Computational Sciences and its Applications, (ICCSA 2008), IEEE Computer Society, pp. 353--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. F. Ye, Z. D. Dai and K. Y. Lam. Decomposing Attacks on Asymmetric Cryptography Based on Mapping Compositions, Journal of Cryptology (14), pp. 137--150, 2001.Google ScholarGoogle Scholar

Index Terms

  1. Decomposition of generic multivariate polynomials

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ISSAC '10: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation
      July 2010
      366 pages
      ISBN:9781450301503
      DOI:10.1145/1837934

      Copyright © 2010 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 25 July 2010

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      ISSAC '10 Paper Acceptance Rate45of110submissions,41%Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader