skip to main content
10.1145/1839778.1839800acmconferencesArticle/Chapter ViewAbstractPublication PagesspmConference Proceedingsconference-collections
research-article

Constructing A-spline weight functions for stable WEB-spline finite element methods

Published: 01 September 2010 Publication History

Abstract

Whereas traditional finite element methods use meshes to define domain geometry, weighted extended B-spline finite element methods rely on a weight function. A weight function is a smooth, strictly positive function which vanishes at the domain boundary at an appropriate rate. We describe a method for generating weight functions for a general class of domains based on A-splines. We demonstrate this approach and address the relationship between weight function quality and error in the resulting finite element solutions.

References

[1]
C. Bajaj, R. Bettadapura, N. Lei, A. Mollere, C. Peng, and A. Rand. Constructing A-spline weight functions for WEB-spline finite element methods. Technical report, Texas Institute for Computational and Applied Mathematics, The University of Texas at Austin, 2010. to appear.
[2]
C. Bajaj and G. Xu. A-splines: local interpolation and approximation using Gk-continuous piecewise real algebraic curves. Comput. Aided Geom. Des., 16(6):557--578, 1999.
[3]
C. Bajaj and G. Xu. Regular algebraic curve segments (III)-applications in interactive design and data fitting. Comput. Aided Geom. Des., 18(3):149--173, 2001.
[4]
C. L. Bajaj and G. Xu. Smooth shell construction with mixed prism fat surfaces. In G. Burnett, H. Bieri, and G. Farin, editors, Geometric Modeling Computing Supplement, volume 14, pages 19--35. 2001.
[5]
K. Höllig. Finite Element Methods with B-Splines. SIAM, 2003.
[6]
K. Höllig and U. Reif. Nonuniform web-splines. Comput. Aided Geom. Des., 20(5):277--294, 2003.
[7]
K. Hollig, U. Reif, and J. Wipper. B-spline approximation of Neumann problems, 2001. Preprint.
[8]
K. Höllig, U. Reif, and J. Wipper. Weighted extended B-spline approximation of Dirichlet problems. SIAM J. Numer. Anal., 39(2):442--462, 2001.
[9]
J. Prasiswa. Lokale und globale Algorithmen zur Approximation mit erweiterten B-Splines. PhD thesis, Technische Universität Darmstadt, 2009.
[10]
V. Rvachev and T. Sheiko. R-functions in boundary value problems in mechanics. Appl. Mech. Rev., 48:151, 1995.
[11]
V. Rvachev, T. Sheiko, V. Shapiro, and I. Tsukanov. On completeness of RFM solution structures. Comput. Mech., 25(2):305--317, 2000.
[12]
G. Xu, C. Bajaj, and C. Chu. Regular algebraic curve segments (II)-Interpolation and approximation. Comput. Aided Geom. Des., 17(6):503--519, 2000.
[13]
G. Xu, C. Bajaj, and W. Xue. Regular algebraic curve segments (I)-Definitions and characteristics. Comput. Aided Geom. Des., 17(6):485--501, 2000.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SPM '10: Proceedings of the 14th ACM Symposium on Solid and Physical Modeling
September 2010
220 pages
ISBN:9781605589848
DOI:10.1145/1839778
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 September 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. algebraic splines
  2. finite element method

Qualifiers

  • Research-article

Funding Sources

Conference

SPM '10
Sponsor:
SPM '10: Symposium on Solid and Physical Modeling
September 1 - 3, 2010
Haifa, Israel

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)1
Reflects downloads up to 22 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An adaptive collocation method on implicit domains using weighted extended THB-splinesComputer Aided Geometric Design10.1016/j.cagd.2024.102297111:COnline publication date: 1-Jun-2024
  • (2018)Programming finite element methods with weighted B-splinesComputers & Mathematics with Applications10.1016/j.camwa.2015.02.01970:7(1441-1456)Online publication date: 31-Dec-2018
  • (2016)Collocation with WEB---SplinesAdvances in Computational Mathematics10.1007/s10444-015-9444-x42:4(823-842)Online publication date: 1-Aug-2016
  • (2013)VolRoverN: Enhancing Surface and Volumetric Reconstruction for Realistic Dynamical Simulation of Cellular and Subcellular FunctionNeuroinformatics10.1007/s12021-013-9205-212:2(277-289)Online publication date: 8-Oct-2013

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media