skip to main content
10.1145/1854776.1854793acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

A parameter estimation approach for non-linear systems biology models using spline approximation

Published:02 August 2010Publication History

ABSTRACT

Mathematical models for revealing the dynamics and interactions properties of biological systems play an important role in computational systems biology. The inference of model parameter values from time-course data can be considered as a "reverse engineering" process and still one of the most challenging tasks. It is worth to develop parameter estimation methods which are robust against noise, efficient in computation and flexible enough to meet different constraints. Parameter estimation method of combining spline theory with Nonlinear Programming (NLP) is developed. The method removes the need for ODE solver during the identification process. Our analysis shows that the augmented cost function surface used in the proposed method is smoother than the original one; which can ease the optima searching process and hence enhance the robustness and speed. Moreover, the core of our algorithms is NLP based, which is very flexible and consequently additional constraints can be added/removed easily. Our results confirm that the proposed method is both efficient and robust.

References

  1. D. Boor. A practical guide to splines. Springer, New York, 1987.Google ScholarGoogle Scholar
  2. W. C. Chang, C. W. Li, and B. S. Chen. Quantitative inference of dynamic regulatory pathways via microarray data. BMC Bioinformatics, 6:1--19, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  3. I. C. Chou, H. Martens, and E. O. Voit. Parameter estimation in biochemical systems models with alternating regression. Theor Biol Med Model., 19:3--25, 2006.Google ScholarGoogle Scholar
  4. G. Goel, I. C. Chou, and E. O. Voit. System estimation from metabolic time-series data. Bioinformatics, 24(21):2505--2511, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. O. R. Gonzalez, C. Küer, K. Jung, P. C. J. Naval, and E. Mendoza. Parameter estimation using simulated annealing for s-system models of biochemical networks. Bioinformatics, 23(4):480--486, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. R. N. Gutenkunst, J. J. Waterfall, F. P. Casey, K. S. Brown, C. R. Myers, and J. P. Sethna. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol., 3(10):1871--1878, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  7. S. Kikuchi, D. Tominaga, M. Arita, K. Takahashi, and M. Tomita. Dynamic modeling of genetic networks using genetic algorithm and s-system. Bioinformatics, 19(5):643--650, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  8. G. Koh, H. F. Teong, M. V. Cléent, D. Hsu, and P. S. Thiagarajan. A decompositional approach to parameter estimation in pathway modeling: a case study of the akt and mapk pathways and their crosstalk. Bioinformatics, 22(24):271--280, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. Lall and E. O. Voit. Parameter estimation in modulated, unbranched reaction chains within biochemical systems. Comput Biol Chem., 29(5):309--318, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Mendes and D. Kell. Non-linear optimization of biochemical pathways: application to metabolic engineering and parameter estimation. Bioinformatics, 14(10):869--883, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  11. C. G. Moles, P. Mendes, and J. R. Banga. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res., 13(11):2467--2474, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  12. T. P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput., 4:284--294, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. M. A. Savageau. Biochemical Systems Analysis: a study of Function and Design in Molecular Biology. Reading, MA: Addison-Wesley, Reading, 1976.Google ScholarGoogle Scholar
  14. M. Swat, A. Kel, and H. Herzel. Bifurcation analysis of the regulatory modules of the mammalian g1/s transition. Bioinformatics, 20(10):1506--1511, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. I. V. Tetko, D. J. Livingstone, and A. I. Luik. Neural network studies. 1. comparison of overfitting and overtraining. J. Chem. Inf. Comput. Sci., 35:826--833, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  16. K. Y. Tsai and F. S. Wang. Evolutionary optimization with data, collocation for reverse engineering of biological networks. Bioinformatics, 21(7):1180--1188, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. R. Veflingstad, J. Almeida, and E. O. Voit. Priming nonlinear searches for pathway identification. Theor Biol Med Model., page 1:8, 2004.Google ScholarGoogle Scholar
  18. E. O. Voit. Computational analysis of biochemical systems, a practical guide for biochemists and molecular biologists. Cambridge University Press, Cambridge, 2000.Google ScholarGoogle Scholar
  19. E. O. Voit and J. Almeida. Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics, 20(11):1670--1681, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. J. Waterfall, F. P. Casey, R. N. Gutenkunst, K. S. Brown, C. R. Myers, P. W. Brouwer, V. Elser, and J. P. Sethna. Sloppy-model universality class and the vandermonde matrix. Phys Rev Lett., 97(15):150601, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  21. H. Yue, M. Brown, J. Knowles, H. Wang, D. S. Broomhead, and D. B. Kell. Insights into the behaviour of systems biology models from dynamic sensitivity and identifiability analysis: a case study of an nf-kb signalling pathway. Mol Biosyst., 2(12):640--649, 2006.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    BCB '10: Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology
    August 2010
    705 pages
    ISBN:9781450304382
    DOI:10.1145/1854776

    Copyright © 2010 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 2 August 2010

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate254of885submissions,29%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader