skip to main content
research-article

A PML-based nonreflective boundary for free surface fluid animation

Published:05 November 2010Publication History
Skip Abstract Section

Abstract

This article presents a novel nonreflective boundary condition for the free surface incompressible Euler and Navier-Stokes equations. Boundaries of this type are very useful when, for example, simulating water flow around a ship moving over a wide ocean. Normally waves generated by the ship will reflect off of the boundaries of the simulation domain and as these reflected waves return towards the ship they will cause undesired interference patterns. By employing a Perfectly Matched Layer (PML) approach we have derived a boundary condition that absorbs incoming waves and thus efficiently prevents these undesired wave reflections. To solve the resulting boundary equations we present a fast and stable algorithm based on the stable fluids approach. Through numerical experiments we then show that our boundaries are significantly more effective than simpler reflection preventing techniques. We also provide a thorough analysis of the parameters involved in our boundary formulation and show how they effect wave absorption efficiency.

Skip Supplemental Material Section

Supplemental Material

tp085_11.mp4

mp4

29.1 MB

References

  1. Abarbanel, S. and Gottlieb, D. 1997. A mathematical analysis of the pml method. J. Comput. Phys. 134, 2, 357--363. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adalsteinsson, D. and Sethian, J. A. 1995. A fast level set method for propagating interfaces. J. Comput. Phys. 118, 2, 269--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baldauf, M. 2008. Stability analysis for linear discretisations of the advection equation with runge-kutta time integration. J. Comput. Phys. 227, 13, 6638--6659. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bcache, E., Fauqueux, S., and Joly, P. 2003. Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188, 2, 399--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bcache, E., Dhia, A.-S. B.-B., and Legendre, G. 2004. Perfectly matched layers for the convected helmholtz equation. SIAM J. Numer. Anal. 42, 1, 409--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Berenger, J.-P. 1994. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 2, 185--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bcache, E., Fauqueux, S., and Joly, P. 2003. Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188, 2, 399--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chew, W. C. and Weedon, W. H. 1994. A 3-d perfectly matched medium from modified maxwell's equations with stretched coordinates. Microwave Opt. Tech. Lett. 7, 599--604.Google ScholarGoogle ScholarCross RefCross Ref
  9. Chorin, A. 1968. Numerical solution of navier-stokes equations. Math. Comp. 22, 745--762.Google ScholarGoogle ScholarCross RefCross Ref
  10. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 1, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of ACM SIGGRAPH Conference. 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of ACM SIGGRAPH Conference. ACM Press, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gottlieb, S. and Shu, C.-W. 1998. Total variation diminishing runge-kutta schemes. Math. Comput. 67, 221, 73--85. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hagstrom, T., Goodrich, J., Nazarov, I., and Dodson, C. 2005. High-order methods and boundary conditions for simulating subsonic flows. In Proceedings of the 11th AIAA/CEAS Aeroacoustics Conference. AIAA--2005--2869.Google ScholarGoogle Scholar
  15. Hagstrom, T. and Nazarov, I. 2002. Absorbing layers and radiation boundary conditions for jet flow simulations. In Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2002--2606.Google ScholarGoogle Scholar
  16. Hagstrom, T. and Nazarov, I. 2003. Perfectly matched layers and radiation boundary conditions for shear flow calculations. In Proceedings of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003--3298.Google ScholarGoogle Scholar
  17. He, X. and Luo, L.-S. 1997. Lattice boltzmann model for the incompressible navierstokes equation. J. Statis. Phys. 88, 3, 927--944.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hein, S., Hohage, T., Koch, W., and Schberl, J. 2007. Acoustic resonances in a high-lift configuration. J. Fluid Mech. 582, -1, 179--202.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hu, F. 2006. On the construction of pml absorbing boundary condition for the non-linear euler equations. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. AIAA--2006--798.Google ScholarGoogle ScholarCross RefCross Ref
  20. Hu, F. Q. 1995. On absorbing boundary conditions for linearized euler equations by a perfectly matched layer. J. Comput. Phys. 129, 201--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hu, F. Q. 1996. On absorbing boundary conditions for linearized euler equations by a perfectly matched layer. J. Comput. Phys. 129, 1, 201--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hu, F. Q. 2001a. A stable, perfectly matched layer for linearized euler equations in unslit physical variables. J. Comput. Phys. 173, 2, 455--480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hu, F. Q. 2001b. A stable, perfectly matched layer for linearized euler equations in unsplit physical variables. J. Comput. Phys. 173, 2, 455--480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hu, F. Q. 2008. Development of pml absorbing boundary conditions for computational aeroacoustics: A progress review. Comput. Fluids 37, 4, 336--348.Google ScholarGoogle ScholarCross RefCross Ref
  25. Hu, F. Q., Hussaini, M. Y., and Manthey, J. L. 1996. Low-dissipation and low-dispersion runge-kutta schemes for computational acoustics. J. Comput. Phys. 124, 1, 177--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Hu, F. Q., Li, X. D., and Lin, D. K. 2008. Absorbing boundary conditions for nonlinear euler and navier-stokes equations based on the perfectly matched layer technique. J. Comput. Phys. 227, 9, 4398--4424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Johnson, S. G. 2007. Notes on perfectly matched layers. http://www-math.mit.edu/~stevenj/18.369/pml.pdfGoogle ScholarGoogle Scholar
  28. Li, X. D. and Gao, J. H. 2005. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones. Phys. Fluids 17, 8, 085105.Google ScholarGoogle ScholarCross RefCross Ref
  29. Li, X. D. and Gao, J. H. 2008. Numerical simulation of the three-dimensional screech phenomenon from a circular jet. Phys. Fluids 20, 3, 035101.Google ScholarGoogle ScholarCross RefCross Ref
  30. Liu, X., Osher, S., and Chan, T. 1994. Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200--212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Monaghan, J. 1988. An introduction to sph. Comput. Phys. Comm. 48, 89--96.Google ScholarGoogle ScholarCross RefCross Ref
  32. Museth, K. and Leforestier, C. 1996. On the direct complex scaling of matrix elements expressed in a discrete variable representation: Application to molecular resonances. J. Chem. Phys. 104, 18, 7008--7014.Google ScholarGoogle ScholarCross RefCross Ref
  33. Neuhasuer, D. and Baer, M. 1989. The time?dependent schrždinger equation: Application of absorbing boundary conditions. J. Chem. Phys. 90, 8, 4351--4355.Google ScholarGoogle ScholarCross RefCross Ref
  34. Nielsen, M. B. and Museth, K. 2006. Dynamic Tubular Grid: An efficient data structure and algorithms for high resolution level sets. J. Sci. Comput. 26, 3, 261--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Nielsen, M. B., Nilsson, O., Söderström, A., and Museth, K. 2007. Out-of-core and compressed level set methods. ACM Trans. Graph. 26, 4, 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Osher, S. and Fedkiw, R. 2002. Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin.Google ScholarGoogle Scholar
  37. Özyörük, Y. 2009. Numerical prediction of aft radiation of turbofan tones through exhaust jets. J. Sound Vibrat. 325, 1-2, 122--144.Google ScholarGoogle ScholarCross RefCross Ref
  38. Reinhardt, W. P. 1982. Complex coordinates in the theory of atomic and molecular structure and dynamics. Ann. Rev. Phys. Chem. 33, 223--255.Google ScholarGoogle ScholarCross RefCross Ref
  39. Richards, S. K., Zhang, X., Chen, X. X., and Nelson, P. A. 2004. The evaluation of non-reflecting boundary conditions for duct acoustic computation. J. Sound Vibrat. 270, 3, 539--557.Google ScholarGoogle ScholarCross RefCross Ref
  40. Shu, C. and Osher, S. 1988. Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439--471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Söderström, A. and Museth, K. 2009. Nonreflective boundary conditions for incompressible free surface fluids. In Proceedings of the SIGGRAPH'09 Talks. ACM, New York 1--1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Stam, J. 1999. Stable fluids. In Proceedings of SIGGRAPH Conference. 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Tam, C. K. and Webb, J. C. 1993. Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 2, 262--281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Turkel, E. and Yefet, A. 1998. Absorbing pml boundary layers for wave-like equations. Appl. Numer. Math. 27, 4, 533--557. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zhao, L. and Cangellaris, A. 1996. Gt-pml: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids. IEEE Trans. Microw. Theory Tech. 44, 12, 2555--2563.Google ScholarGoogle ScholarCross RefCross Ref
  46. Zhu, Y. and Bridson, R. 2005. Animating sand as a fluid. In Proceedings of the ACM SIGGRAPH Papers. ACM, New York. 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A PML-based nonreflective boundary for free surface fluid animation

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 29, Issue 5
              October 2010
              58 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/1857907
              Issue’s Table of Contents

              Copyright © 2010 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 5 November 2010
              • Accepted: 1 August 2010
              • Revised: 1 April 2010
              • Received: 1 August 2009
              Published in tog Volume 29, Issue 5

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader