skip to main content
10.1145/1871437.1871493acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Multilevel manifold learning with application to spectral clustering

Published:26 October 2010Publication History

ABSTRACT

In the past decade, a number of nonlinear dimensionality reduction methods using an affinity graph have been developed for manifold learning. This paper explores a multilevel framework with the goal of reducing the cost of unsupervised manifold learning and preserving the embedding quality at the same time. An application to spectral clustering is also presented. Experimental results indicate that our multilevel approach is an appealing alternative to standard techniques.

References

  1. S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurrency: Practice and Experience, 6:101--107, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373--1396, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and M. Ouimet. Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and spectral clustering. In Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.Google ScholarGoogle Scholar
  4. D. L. Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4):324--344, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Chan, B. Smith, and J. Zou. Multigrid and domain decomposition methods for unstructured meshes. In The 3rd International Conference on Advances in Numerical Methods and Applications, pages 53--62, Sofia, Bulgaria, 1994.Google ScholarGoogle Scholar
  6. J. Chen, H.-r. Fang, and Y. Saad. Fast approximate kNN graph construction for high dimensional data via recursive Lanczos bisection. J. of Machine Learning Research, 10:1989--2012, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. R. R. Coifman and S. Lafon. Diffusion maps. Appl. Comput. Harmon. Anal., 21:5--30, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  8. V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear dimensionality reduction. In Advances in Neural Information Processing Systems 15, pages 705--712. MIT Press, Cambridge, MA, 2003.Google ScholarGoogle Scholar
  9. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269--271, 1959.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. L. Donoho and C. Grimes. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. In Proceedings of the National Academy of Arts and Sciences, pages 100:5591--5596, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  11. G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, October 2007.Google ScholarGoogle Scholar
  12. G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput., 48(1):96--129, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. VLSI Design, 11(3):285--300, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  14. S. Lafon and A. B. Lee. Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Trans. Pattern Anal. Mach. Intell., 28(9):1393--1403, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM Publications, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. M. Martínez and A. C. Kak. PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell., 23(2):228--233, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems 14 (NIPS), 2002.Google ScholarGoogle Scholar
  18. S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323--2326, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  19. S. Sakellaridi, H.-r. Fang, and Y. Saad. Graph-based multilevel dimensionality reduction with applications to eigenfaces and latent semantic indexing. In The 7th International Conference on Machine Learning and Applications (ICMLA), pages 194--200, Washington, DC, USA, 2008. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. S. Samaria and A. C. Harter. Parameterisation of a stochastic model for human face identification. In The 2nd IEEE Workshop on Applications of Computer Vision, pages 138--142, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  21. L. K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learning of low dimensional manifolds. J. of Machine Learning Research, 4:119--155, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, and D. D. Lee. Spectral methods for dimensionality reduction. In Semisupervised Learning. MIT Press, Cambridge, MA, 2006.Google ScholarGoogle Scholar
  23. F. Sha and L. K. Saul. Analysis and extension of spectral methods for nonlinear dimensionality reduction. In The 22nd international conference on Machine learning (ICML), pages 784--791, New York, NY, USA, 2005. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Shaw and T. Jebara. Minimum volume embedding. In The 11th Conference on Artificial Intelligence and Statistics (AISTATS), volume 2, pages 460--467, 2007.Google ScholarGoogle Scholar
  25. G. W. Stewart and J.-g. Sun. Matrix Perturbation Theory. Academic Press, 1990.Google ScholarGoogle Scholar
  26. A. Talwalkar, S. Kumar, and H. A. Rowley. Large-scale manifold learning. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2008.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319--2323, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  28. J. Venna and S. Kaski. Neighborhood preservation in nonlinear production methods: An experimental study. In International Conference on Artificial Neural Networks (ICANN), pages 485--491, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. Venna and S. Kaski. Local multidimensional scaling. Neural Networks, 19(6-7):889--899, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Q. Weinberger, B. D. Packer, and L. K. Saul. Nonlinear dimensionality reduction by semidefinite programming and kernel matrix factorization. In The 10th International Workshop on Artificial Intelligence and Statistics (AISTATS), pages 381--388, 2005.Google ScholarGoogle Scholar
  31. K. Q. Weinerger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite programming. International Journal on Computer Vision, 70(1):77--90, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. X. Yu and J. Shi. Multiclass spectral clustering. In The 9th IEEE International Conference on Computer Vision (ICCV), pages 313--319, Washington, DC, USA, 2003. IEEE Computer Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311--331, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Multilevel manifold learning with application to spectral clustering

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          CIKM '10: Proceedings of the 19th ACM international conference on Information and knowledge management
          October 2010
          2036 pages
          ISBN:9781450300995
          DOI:10.1145/1871437

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 26 October 2010

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,861of8,427submissions,22%

          Upcoming Conference

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader