skip to main content
10.1145/1877808.1877813acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

Orientation invariant 3D object classification using hough transform based methods

Published: 25 October 2010 Publication History

Abstract

In comparison to the 2D case, object class recognition in 3D is a much less researched area. However, with the advent of affordable 3D acquisition technology and the growing popularity of 3D content, its relevance is steadily increasing. Just as in the 2D case, 3D data is often partial, noisy and without prior segmentation. Moreover, the object is rarely observed in a canonical frame of reference with respect to orientation (or scale). We propose a method, using Hough-voting for local 3D features, which is orientation (and scale) invariant.

References

[1]
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE PAMI 21 (1999) 433--449
[2]
Kobbelt, L., SchrA der, P., Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3d shape descriptors. (2003)
[3]
Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Symposium on Geometry Processing. (2005) 197--206
[4]
Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: SGP. (2009) 1383--1392
[5]
Toldo, R., Castellani, U., Fusiello, A.: A bag of words approach for 3d object categorization. In: MIRAGE. (2009)
[6]
Ovsjanikov, M., Bronstein, A., Bronstein, M., Guibas, L.: Shape google: a computer vision approach to isometry invariant shape retrieval. In: NORDIA. (2009)
[7]
Funkhouser, T., Shilane, P.: Partial matching of 3d shapes with priority-driven search. In: Eurographics symposium on Geometry processing. (2006)
[8]
Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation IJCV 77 (2008) 259--289
[9]
Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: ICCV. (2003)
[10]
Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3d surf for robust three dimensional classification. In: ECCV. (2010)
[11]
Lehmann, A., Leibe, B., Gool, L.V.: Feature-centric efficient subwindow search. In: ICCV. (2009)
[12]
Maji, S., Malik, J.: Object detection using a max-margin hough transform. In: CVPR. (2009) 1038--1045
[13]
Mian, A.S., Bennamoun, M., Owens, R.: Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE PAMI 28 (2006)
[14]
Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: ECCV. (2008) 650--663
[15]
Bronstein, A., Bronstein, M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer Publishing Company, Incorporated (2008)
[16]
Dutagaci, H., Godil, A., Axenopoulos, A., Daras, P., Furuya, T., R. Ohbuchi, R.: Shrec 2009 - shape retrieval contest of partial 3d models. (2009)
[17]
Muja, M., Lowe, D.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISAPP. (2009)
[18]
Osada, R., Funkhouser, T., Chazelle, B., Dobki, D.: Shape distributions. ACM Transactions on Graphics (2002) 807--832
[19]
http://sourceforge.net/projects/libfvs/.
[20]
Furuya, T., Ohbuchi, R.: Dense sampling and fast encoding for 3d model retrieval using bag-of-visual features. In: CIVR. (2009)
[21]
Cyr, C.M., Kimia, B.B.: A similarity-based aspect-graph approach to 3d object recognition. IJCV (2004) 5--22
[22]
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110 (2008) 346--359
[23]
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (2001) Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
[24]
Swain, M.J., Ballard, D.H.: Color indexing. IJCV 7 (1991)

Cited By

View all
  • (2025)A Multi-Modal Attention-Based Approach for Points of Interest Detection on 3D ShapesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.336876731:3(1698-1712)Online publication date: Mar-2025
  • (2023)Convolutional Hough Matching Networks for Robust and Efficient Visual CorrespondenceIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.3233884(1-16)Online publication date: 2023
  • (2021)Convolutional Hough Matching Networks2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR46437.2021.00296(2939-2949)Online publication date: Jun-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
3DOR '10: Proceedings of the ACM workshop on 3D object retrieval
October 2010
96 pages
ISBN:9781450301602
DOI:10.1145/1877808
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 October 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. SVM
  2. hough transform
  3. orientation invariant
  4. shape classification
  5. shape descriptors

Qualifiers

  • Research-article

Conference

MM '10
Sponsor:
MM '10: ACM Multimedia Conference
October 25, 2010
Firenze, Italy

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)A Multi-Modal Attention-Based Approach for Points of Interest Detection on 3D ShapesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.336876731:3(1698-1712)Online publication date: Mar-2025
  • (2023)Convolutional Hough Matching Networks for Robust and Efficient Visual CorrespondenceIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2022.3233884(1-16)Online publication date: 2023
  • (2021)Convolutional Hough Matching Networks2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR46437.2021.00296(2939-2949)Online publication date: Jun-2021
  • (2020)ImVoteNet: Boosting 3D Object Detection in Point Clouds With Image Votes2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR42600.2020.00446(4403-4412)Online publication date: Jun-2020
  • (2019)Detecting 3D Points of Interest Using Multiple Features and Stacked Auto-encoderIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.284862825:8(2583-2596)Online publication date: 1-Aug-2019
  • (2019)Deep Hough Voting for 3D Object Detection in Point Clouds2019 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV.2019.00937(9276-9285)Online publication date: Oct-2019
  • (2019)3D object recognition and classification: a systematic literature reviewPattern Analysis and Applications10.1007/s10044-019-00804-4Online publication date: 27-Feb-2019
  • (2017)LightNetProceedings of the Workshop on 3D Object Retrieval10.2312/3dor.20171046(9-16)Online publication date: 23-Apr-2017
  • (2016)Unsupervised 3D shape segmentation and co-segmentation via deep learningComputer Aided Geometric Design10.1016/j.cagd.2016.02.01543:C(39-52)Online publication date: 1-Mar-2016
  • (2015)Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator3D Research10.1007/s13319-015-0074-36:4(1-22)Online publication date: 1-Dec-2015
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media