skip to main content
10.1145/1900520.1900522acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Scattered data interpolation and approximation for computer graphics

Published: 15 December 2010 Publication History

Abstract

The goal of scattered data interpolation techniques is to construct a (typically smooth) function from a set of unorganized samples. These techniques have a wide range of applications in computer graphics. For instance they can be used to model a surface from a set of sparse samples, to reconstruct a BRDF from a set of measurements, to interpolate motion capture data, or to compute the physical properties of a fluid. This course will survey and compare scattered interpolation algorithms and describe their applications in computer graphics. Although the course is focused on applying these techniques, we will introduce some of the underlying mathematical theory and briefly mention numerical considerations.

References

[1]
Anders Adamson and Marc Alexa. Anisotropic point set surfaces. In Afrigraph 2006: Proceedings of the 4th International Conference on Computer Graphics, Virtual Reality, Visualization and Interaction in Africa, pages 7--13. ACM Press, 2006.
[2]
N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337--404, 1950.
[3]
W. Baxter and K. Anjyo. Latent doodle space. Computer Graphics Forum, 25:477--485, 2006.
[4]
R. K. Beatson, W. A. Light, and S. Billings. Fast solution of the radial basis function interpolation equations: Domain decomposition methods. SIAM J. Sci. Comput., 22(5):1717--1740, 2000.
[5]
R. K. Beatson, J. B. Cherrie, and C. T. Mouat. Fast fitting of radial basis functions: Methods based on preconditioned gmres iteration. Advances in Computational Mathematics, 11:253--270, 1999.
[6]
S. Bergman. The kernel function and the conformal mapping. Mathematical Surveys, 5, 1950.
[7]
Bernd Bickel, Mario Botsch, Roland Angst, Wojciech Matusik, Miguel Otaduy, Hanspeter Pfister, and Markus Gross. Multi-scale capture of facial geometry and motion. ACM Trans. Graph., 26(3):33, 2007.
[8]
Christopher Bishop. Pattern Recognition and Machine Learning. Springer, 2007.
[9]
Jean-Daniel Boissonnat and Frédéric Cazals. Smooth surface reconstruction via natural neighbour interpolation of distance functions. In SCG '00: Proceedings of the sixteenth annual symposium on Computational geometry, pages 223--232, New York, NY, USA, 2000. ACM.
[10]
Martin D. Buhmann. Radial Basis Functions: Theory and Implementations. Cambridge University Press, 2003.
[11]
J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and T. R. Evans. Reconstruction and representation of 3d objects with radial basis functions. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 67--76, New York, NY, USA, 2001. ACM.
[12]
Z.-Q. Cheng, Y.-Z. Wang, K. Xu B. Li, G. Dang, and S. Y.-Jin. A survey of methods for moving least squares surfaces. In IEEE/EG Symposium on Volume and Point-Based Graphics, 2008.
[13]
Stefano De Marchi, Robert Schaback, and Holger Wendland. Near-optimal data-independent point locations for radial basis function interpolation. Advances in Computational Mathematics, 23:317--330, 2005. 10.1007/s10444-004-1829-1.
[14]
J. Duchon. Math. comp. Interpolation des Fonctions de Deux Variables Suivant le Principe de la Flexion des Plaques Minces, 10:5--12, 1976.
[15]
Gregory Fasshauer. Solving differential equations with radial basis functions: multilevel methods and smoothing. Advances in Computational Mathematics, 11:139--159, 1999. 10.1023/A:1018919824891.
[16]
Gregory Fasshauer and Jack Zhang. On choosing "optimal" shape parameters for rbf approximation. Numerical Algorithms, 45:345--368, 2007. 10.1007/s11075-007-9072-8.
[17]
Gregory E. Fasshauer and Larry L. Schumaker. Scattered data fitting on the sphere. In Proceedings of the international conference on Mathematical methods for curves and surfaces II Lillehammer, 1997, pages 117--166, Nashville, TN, USA, 1998. Vanderbilt University.
[18]
Gregory F. Fasshauer. Meshfree Approximation Methods with MATLAB. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2007.
[19]
Frank Filbir and Dominik Schmid. Stability results for approximation by positive definite functions on so (3). J. Approx. Theory, 153(2):170--183, 2008.
[20]
Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. Robust moving least-squares fitting with sharp features. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, pages 544--552, New York, NY, USA, 2005. ACM.
[21]
C. Franke and R. Schaback. Solving partial differential equations by collocation using radial basis functions. Applied Mathematics and Computation, 93(1):73--82, 1998.
[22]
R. Franke and G. Nielson. Smooth interpolation of large sets of scattered data. International Journal of Numerical Methods in Engineering, 15:1691--1704, 1980.
[23]
Richard Franke. Math. comp. Scattered data interpolation: tests of some methods, 38(157):181--200, 1982.
[24]
Edward J. Fuselier. Refined error estimates for matrix-valued radial basis functions. PhD thesis, Texas A & M University, College Station, Texas, 2006.
[25]
Edward J. Fuselier and Grady B. Wright. Stability and error estimates for vector field interpolation and decomposition on the sphere with rbfs. SIAM J. Numer. Anal., 47(5):3213--3239, 2009.
[26]
Eitan Grinspun, Mathieu Desbrun, and et al. Discrete differential geometry: An applied introduction. SIGGRAPH Course, 2006.
[27]
R. L. Hardy. Journal of geophysical research. Multiquadric equations of topography and other irregular surfaces, 76(8):19051915, 1971.
[28]
T. Hatanaka, N. Kondo, and K. Uosaki. Multi-objective structure selection for radial basis function networks based on genetic algorithm.
[29]
Y. C. Hon, R. Schaback, and X. Zhou. Adaptive greedy algorithm for solving large rbf collocation problems. Numer. Algorithms, 32:13--25, 2003.
[30]
Hsin-Yun Hu, Zi-Cai Li, and Alexander H. D. Cheng. Radial basis collocation methods for elliptic boundary value problems. Comput. Math. Appl., 50(1--2):289--320, 2005.
[31]
S. Jakobsson and O. Amoignon. Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Computers & Fluids, 36(6):1119--1136, 2007.
[32]
Pushkar Joshi, Wen C. Tien, Mathieu Desbrun, and Frédéric Pighin. Learning controls for blend shape based realistic facial animation. In SCA '03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 187--192, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.
[33]
Tsuneya Kurihara and Natsuki Miyata. Modeling deformable human hands from medical images. In Proceedings of the 2004 ACM SIGGRAPH Symposium on Computer Animation (SCA-04), pages 357--366, 2004.
[34]
J. P. Lewis. Generalized stochastic subdivision. ACM Transactions on Graphics, 6(3):167--190, July 1987.
[35]
J. P. Lewis. Lifting detail from darkness. In SIGGRAPH '01: Proceedings of the SIGGRAPH 2001 conference Sketches & applications. ACM Press, 2001.
[36]
A. Lorusso, D. W. Eggert, and R. B. Fisher. A comparison of four algorithms for estimating 3-d rigid transformations. In BMVC '95: Proceedings of the 1995 British conference on Machine vision (Vol. 1), pages 237--246, Surrey, UK, UK, 1995. BMVA Press.
[37]
J. Meinguet. Multivariate interpolation at arbitrary points made simple. Z. Angew. Math., 30:292--304, 1979.
[38]
Tomohiko Mukai and Shigeru Kuriyama. Geostatistical motion interpolation. ACM Trans. Graph., 24(3):1062--1070, 2005.
[39]
Francis J. Narcowich and Joseph D. Ward. Generalized hermite interpolation via matrix-valued conditionally positive definite functions. Math. Comput., 63(208):661--687, 1994.
[40]
Jun-yong Noh and Ulrich Neumann. Expression cloning. In SIGGRAPH '01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 277--288, New York, NY, USA, 2001. ACM.
[41]
Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. Multi-level partition of unity implicits. ACM Trans. Graph., 22(3):463--470, 2003.
[42]
Sang Il Park, Hyun Joon Shin, and Sung Yong Shin. On-line locomotion generation based on motion blending. In SCA '02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 105--111, New York, NY, USA, 2002. ACM.
[43]
Sung W. Park, Lars Linsen, Oliver Kreylos, John D. Owens, and Bernd Hamann. Discrete sibson interpolation. IEEE Transactions on Visualization and Computer Graphics, 12(2):243--253, 2006.
[44]
Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient simplification of point-sampled surfaces. In VIS '02: Proceedings of the conference on Visualization '02, pages 163--170, Washington, DC, USA, 2002. IEEE Computer Society.
[45]
Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus Gross. Shape modeling with point-sampled geometry. In SIGGRAPH '03: ACM SIGGRAPH 2003 Papers, pages 641--650, New York, NY, USA, 2003. ACM.
[46]
Xavier Pennec. Computing the mean of geometric features - application to the mean rotation. Technical Report Tech Report 3371, Institut National de Recherche en Informatique et en Automatique, March 1998.
[47]
Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. ACM Trans. Graph., 22(3):313--318, 2003.
[48]
Frédéric Pighin, Jamie Hecker, Dani Lischinski, Richard Szeliski, and David H. Salesin. Synthesizing realistic facial expressions from photographs. In SIGGRAPH '98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pages 75--84, New York, NY, USA, 1998. ACM.
[49]
T. C. S. Rendall and C. B. Allen. Reduced surface point selection options for efficient mesh deformation using radial basis functions. J. Comput. Phys., 229(8):2810--2820, 2010.
[50]
C. F. Rose, I. Peter-pike, J. Sloan, and M. F. Cohen. Artist-directed inverse-kinematics using radial basis function interpolation. In EUROGRAPHICS, 2001.
[51]
M. Sato. Theory of hyperfunctions. I, Fac. Sci. Univ. Tokyo Sect. 1, 8, 139--193, 1959; II, ibid, 8, 387--437, 1960.
[52]
Scott Schaefer, Travis McPhail, and Joe Warren. Image deformation using moving least squares. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, pages 533--540, New York, NY, USA, 2006. ACM.
[53]
B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.
[54]
L. Schwartz. Théory des Distributions, vol. I et II. Hermann, 1950, 1951.
[55]
Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In ACM '68: Proceedings of the 1968 23rd ACM national conference, pages 517--524, New York, NY, USA, 1968. ACM.
[56]
Robert Sibson. A brief description of natural neighbor interpolation. In V. Barnett, editor, Interpreting Multivariate Data, chapter 2, pages 21--36. John Wiley, Chichester, 1981.
[57]
H. Todo, K. Anjyo, W. Baxter, and T. Igarashi. Locally controllable stylized shading. ACM Trans. Graph., 26(3):17, 2007.
[58]
Karel Uhlir and Vaclav Skala. Radial basis function use for the restoration of damaged images. In Max Viergever, K. Wojciechowski, B. Smolka, H. Palus, R. S. Kozera, W. Skarbek, and L. Noakes, editors, Computer Vision and Graphics, volume 32 of Computational Imaging and Vision, pages 839--844. Springer Netherlands, 2006.
[59]
R. Peter Weistroffer, Kristen R. Walcott, Greg Humphreys, and Jason Lawrence. Efficient basis decomposition for scattered reflectance data. In EGSR07: Proceedings of the Eurographics Symposium on Rendering, Grenoble, France, June 2007.
[60]
Holger Wendland. Scattered Data Approximation. Cambridge, 2005.
[61]
Holger Wendland. Divergence-free kernel methods for approximating the stokes problem. SIAM J. Numer. Anal., 47(4):3158--3179, 2009.
[62]
Lexing Ying. Short note: A kernel independent fast multipole algorithm for radial basis functions. J. Comput. Phys., 213(2):451--457, 2006.
[63]
Yuanchen Zhu and Steven J. Gortler. 3d deformation using moving least squares. harvard computer science technical report: Tr-10-07. Technical report, Harvard University, Cambridge, MA, 2007.
[64]
Todd Zickler, Ravi Ramamoorthi, Sebastian Enrique, and Peter N. Belhumeur. Reflectance sharing: Predicting appearance from a sparse set of images of a known shape. IEEE Trans. Pattern Anal. Mach. Intell., 28(8):1287--1302, 2006.

Cited By

View all
  • (2024)Enhanced Seamless Video Fusion: A Convolutional Pyramid-Based 3D Integration AlgorithmSensors10.3390/s2406185224:6(1852)Online publication date: 14-Mar-2024
  • (2023)Algebraic curve interpolation for intervals via symbolic-numeric computationSCIENTIA SINICA Mathematica10.1360/SCM-2023-0092Online publication date: 26-Dec-2023
  • (2022)Bidirectional Reflectance Distribution Function (BRDF)-Based Coarseness Prediction of Textured Metal SurfaceIEEE Access10.1109/ACCESS.2022.316151810(32461-32469)Online publication date: 2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SA '10: ACM SIGGRAPH ASIA 2010 Courses
December 2010
1481 pages
ISBN:9781450305273
DOI:10.1145/1900520
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 December 2010

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

SA '10
Sponsor:
SA '10: SIGGRAPH ASIA 2010
December 15 - 18, 2010
Seoul, Republic of Korea

Acceptance Rates

Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)23
  • Downloads (Last 6 weeks)1
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Enhanced Seamless Video Fusion: A Convolutional Pyramid-Based 3D Integration AlgorithmSensors10.3390/s2406185224:6(1852)Online publication date: 14-Mar-2024
  • (2023)Algebraic curve interpolation for intervals via symbolic-numeric computationSCIENTIA SINICA Mathematica10.1360/SCM-2023-0092Online publication date: 26-Dec-2023
  • (2022)Bidirectional Reflectance Distribution Function (BRDF)-Based Coarseness Prediction of Textured Metal SurfaceIEEE Access10.1109/ACCESS.2022.316151810(32461-32469)Online publication date: 2022
  • (2015)Semantic shape editing using deformation handlesACM Transactions on Graphics10.1145/276690834:4(1-12)Online publication date: 27-Jul-2015
  • (2014)A class of piecewise interpolating functions based on barycentric coordinatesRicerche di Matematica10.1007/s11587-014-0214-863:S1(87-102)Online publication date: 28-Aug-2014
  • (2013)Reclaiming Location Privacy in Mobile Telephony Networks—Effects and Consequences for Providers and SubscribersIEEE Systems Journal10.1109/JSYST.2013.22413577:2(211-222)Online publication date: Jun-2013
  • (2012)Analytic Solutions of Integral Moving Least Squares for Polygon SoupsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2011.28618:10(1638-1649)Online publication date: 1-Oct-2012
  • (2011)Convolution pyramidsACM Transactions on Graphics10.1145/2070781.202420930:6(1-8)Online publication date: 12-Dec-2011
  • (2011)Convolution pyramidsProceedings of the 2011 SIGGRAPH Asia Conference10.1145/2024156.2024209(1-8)Online publication date: 12-Dec-2011

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media