skip to main content
research-article

Sum edge coloring of multigraphs via configuration LP

Published: 31 March 2011 Publication History

Abstract

We consider the scheduling of biprocessor jobs under sum objective (BPSMSM). Given a collection of unit-length jobs where each job requires the use of two processors, find a schedule such that no two jobs involving the same processor run concurrently. The objective is to minimize the sum of the completion times of the jobs. Equivalently, we would like to find a sum edge coloring of a given multigraph, that is, a partition of its edge set into matchings M1,…,Mt minimizing Σi=1ti|Mi|.
This problem is APX-hard, even in the case of bipartite graphs [Marx 2009]. This special case is closely related to the classic open shop scheduling problem. We give a 1.8298-approximation algorithm for BPSMSM improving the previously best ratio known of 2 [Bar-Noy et al. 1998]. The algorithm combines a configuration LP with greedy methods, using nonstandard randomized rounding on the LP fractions. We also give an efficient combinatorial 1.8886-approximation algorithm for the case of simple graphs, which gives an improved 1.79568 + O(log d¯/d¯)-approximation in graphs of large average degree d¯.

References

[1]
Afrati, F. N., Bampis, E., Fishkin, A. V., Jansen, K., and Kenyon, C. 2000. Scheduling to minimize the average completion time of dedicated tasks. In Proceedings of the 20th Conference on Foundations of Software Technology and Theoretical Computer Science (FST TCS00). S. Kapoor and S. Prasad Eds., Lecture Notes in Computer Science, vol. 1974. Springer, 454--464.
[2]
Bansal, N. and Sviridenko, M. 2006. The Santa Claus problem. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing. 31--40.
[3]
Bar-Noy, A., Bellare, M., Halldórsson, M. M., Shachnai, H., and Tamir, T. 1998. On chromatic sums and distributed resource allocation. Inf. Comput. 140, 2, 183--202.
[4]
Bar-Noy, A. and Kortsarz, G. 1998. Minimum color sum of bipartite graphs. J. Algor. 28, 2, 339--365.
[5]
Charikar, M., Chekuri, C., Goel, A., Guha, S., and Plotkin, S. A. 1998. Approximating a finite metric by a small number of tree metrics. In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS). 379--388.
[6]
Chekuri, C. and Khanna, S. 2004. Handbook of Scheduling: Algorithms, Models, and Performance Analysis. Chapman & Hall/CRC, Chapter 11.
[7]
Chudak, F. A. and Shmoys, D. B. 2003. Improved approximation algorithms for the uncapacitated facility location problem. SIAM J. Comput. 33, 1, 1--25.
[8]
Chuzhoy, J., Ostrovsky, R., and Rabani, Y. 2006. Approximation algorithms for the job interval selection problem and related scheduling problems. Math. Oper. Res. 31, 4, 730--738.
[9]
Coffman, Jr, E. G., Garey, M. R., Johnson, D. S., and LaPaugh, A. S. 1985. Scheduling file transfers. SIAM J. Comput. 14, 3, 744--780.
[10]
Cook, W., Cunningham, W., Pulleyblank, W., and Schrijver., A. 1998. Combinatorial Optimization. John Wiley and Sons.
[11]
Dobson, G. and Karmarkar, U. S. 1989. Simultaneous resource scheduling to minimize weighted flow times. Open. Res. 37, 4, pp. 592--600.
[12]
Epstein, L., Halldórsson, M. M., Levin, A., and Shachnai, H. 2008. Weighted sum coloring in batch scheduling of conflicting jobs. Algorithmica 55, 4, 643--665.
[13]
Fishkin, A. V., Jansen, K., and Porkolab, L. 2001. On minimizing average weighted completion time of multiprocessor tasks with release dates. In Proceedings of the 28th International Colloquium on Automata, Languages and Programming (ICALP01). F. Orejas, P. G. Spirakis, and J. van Leeuwen, Eds., Lecture Notes in Computer Science, vol. 2076. Springer, 875--886.
[14]
Gandhi, R., Halldórsson, M. M., Kortsarz, G., and Shachnai, H. 2008. Approximating non-preemptive open-shop scheduling and related problems. ACM Trans. Algor. 4, 1.
[15]
Gandhi, R. and Mestre, J. 2009. Combinatorial algorithms for data migration to minimize average completion time. Algorithmica 54, 1, 54--71.
[16]
Gehringer, E. F., Siewiorek, D., and Segall, Z. 1986. Parallel Processing: The Cm* Experience. Digital Press, Newton, MA.
[17]
Giaro, K., Kubale, M., Malafiejski, M., and Piwakowski, K. 2002. Dedicated scheduling of biprocessor tasks to minimize mean flow time. In Proceedings of the 4th International Conference on Parallel Processing and Applied Mathematics (PPAM01). Revised Papers. R. Wyrzykowski, J. Dongarra, M. Paprzycki, and J. Wasniewski, Eds., Lecture Notes in Computer Science, vol. 2328. Springer, 87--96.
[18]
Hall, L. A., Schulz, A. S., Shmoys, D. B., and Wein, J. 1997. Scheduling to minimize average completion time: Off-Line and on-line approximation algorithms. Math. Oper. Res. 22, 513--544.
[19]
Halldórsson, M. M. and Kortsarz, G. 2002. Tools for multicoloring with applications to planar graphs and partial k-trees. J. Algor. 42, 2, 334--366.
[20]
Halldórsson, M. M., Kortsarz, G., and Shachnai, H. 2003. Sum coloring interval and k-claw free graphs with application to scheduling dependent jobs. Algorithmica 37, 187--209.
[21]
Hardy, G. H., Littlewood, J., and Pólya, G. 1952. Inequalities, 2nd Ed. Cambridge University Press.
[22]
Jain, K. 2001. A factor 2 approximation algorithm for the generalized steiner network problem. Combinatorica 21, 1, 39--60.
[23]
Khachiyan, L. 1980. Polynomial-Time algorithm for linear programming. USSR Comput. Math. Math. Phys. 20, 53--72.
[24]
Kim, Y. A. 2005. Data migration to minimize the total completion time. J. Algor. 55, 1, 42--57.
[25]
Krawczyk, H. and Kubale, M. 1985. An approximation algorithm for diagnostic test scheduling in multicomputer systems. IEEE Trans. Comput. 34, 9, 869--872.
[26]
Kubale, M. 1996. Preemptive versus nonpreemptive scheduling of biprocessor tasks on dedicated processors. Euro. J. Oper. Res. 94, 2, 242--251.
[27]
Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and Shmoys, D. B. 1993. Logistics of Production and Inventory. Handbooks in Operations Research and Management Science, vol. 4. North-Holland, 445--522.
[28]
Malafiejski, M., Giaro, K., Janczewski, R., and Kubale, M. 2004. Sum coloring of bipartite graphs with bounded degree. Algorithmica 40, 4, 235--244.
[29]
Marx, D. 2004. Minimum sum multicoloring on the edges of planar graphs and partial k-trees. In Proceedings of the 2nd International Workshop on Approximation and Online Algorithms (WAOA04). G. Persiano and R. Solis-Oba Eds., Lecture Notes in Computer Science, vol. 3351. Springer, 9--22.
[30]
Marx, D. 2005. A short proof of the np-completeness of minimum sum interval coloring. Oper. Res. Lett. 33, 4, 382--384.
[31]
Marx, D. 2006. Minimum sum multicoloring on the edges of trees. Theor. Comput. Sci. 361, 2-3, 133--149.
[32]
Marx, D. 2009. Complexity results for minimum sum edge coloring. Discr. Appl. Math. 157, 5, 1034--1045.
[33]
Mestre, J. 2008. Adaptive local ratio. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA08). S.-H. Teng, Ed., SIAM, 152--160.
[34]
Nutov, Z., Beniaminy, I., and Yuster, R. 2006. A (1−1/e)-approximation algorithm for the generalized assignment problem. Oper. Res. Lett. 34, 3, 283--288.
[35]
Queyranne, M. and Sviridenko, M. 2002a. A (2+epsilon)-approximation algorithm for the generalized preemptive open shop problem with minsum objective. J. Algor. 45, 2, 202--212.
[36]
Queyranne, M. and Sviridenko, M. 2002b. Approximation algorithms for shop scheduling problems with minsum objective. J. Schedul. 5, 4, 287--305.
[37]
Schulz, A. S. and Skutella, M. 2002. Scheduling unrelated machines by randomized rounding. SIAM J. Discr. Math. 15, 4, 450--469.
[38]
Sviridenko, M. 2002. An improved approximation algorithm for the metric uncapacitated facility location problem. In Proceedings of the 9th International Conference on Integer Programming and Combinatorial Optimization (IPCO02). 240--257.
[39]
Vizing, V. G. 1964. On an estimate of the chromatic class of a p-graph. Diskret. Analiz no. 3, 25--30.

Cited By

View all
  • (2023)Approximate Minimum Sum Colorings and Maximum k-Colorable Subgraphs of Chordal GraphsAlgorithms and Data Structures10.1007/978-3-031-38906-1_22(326-339)Online publication date: 31-Jul-2023
  • (2019)On the performance guarantee of First Fit for sum coloringJournal of Computer and System Sciences10.1016/j.jcss.2018.08.00299(91-105)Online publication date: Feb-2019
  • (2019)Scheduling problems over a network of machinesJournal of Scheduling10.1007/s10951-018-0591-z22:2(239-253)Online publication date: 1-Apr-2019

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Algorithms
ACM Transactions on Algorithms  Volume 7, Issue 2
March 2011
284 pages
ISSN:1549-6325
EISSN:1549-6333
DOI:10.1145/1921659
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 31 March 2011
Accepted: 01 September 2010
Revised: 01 August 2010
Received: 01 March 2008
Published in TALG Volume 7, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Edge scheduling
  2. approximation algorithms
  3. configuration LP

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)18
  • Downloads (Last 6 weeks)1
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Approximate Minimum Sum Colorings and Maximum k-Colorable Subgraphs of Chordal GraphsAlgorithms and Data Structures10.1007/978-3-031-38906-1_22(326-339)Online publication date: 31-Jul-2023
  • (2019)On the performance guarantee of First Fit for sum coloringJournal of Computer and System Sciences10.1016/j.jcss.2018.08.00299(91-105)Online publication date: Feb-2019
  • (2019)Scheduling problems over a network of machinesJournal of Scheduling10.1007/s10951-018-0591-z22:2(239-253)Online publication date: 1-Apr-2019

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media