skip to main content
10.1145/1937728.1937764acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicimcsConference Proceedingsconference-collections
research-article

Visual object tracking via sparse reconstruction

Published: 30 December 2010 Publication History

Abstract

This paper proposes a new approach based on sparse representation for visual object tracking. The sparse representation is implemented by exploiting L1--norm minimization, which most compactly expresses the object and rejects all other possible but less compact representations. With the coefficient vector of the sparse representation, we reconstruct the tracked object in an instantaneous sample set, which improves the tracking adaptation to background variation, object shape change, and partial occlusion. Our experiments on public datasets show state-of-the-art results, which are better than those of several representative tracking methods.

References

[1]
Chen, D., and Yang, J. 2007. Robust object tracking via online spatial bias appearance model learning. IEEE Trans. PAMI. 29, 12 (DEC 2007), 2157--2169.
[2]
Collins, R., and Liu, Y. 2003. Online selection of discriminative tracking features. IEEE Conference on ICCV. 346--352.
[3]
Li, Y. J., Yang, J. F., Wu, R. B., and Gong. F. X. 2006. Efficient Object Tracking Based on Local Invariant Features. IEEE Conference on SCIT. 697--700.
[4]
Dalal, N., and Triggs, B. 2005. Histograms of oriented gradients for human detection. IEEE Conference on CVPR. 1063--6919.
[5]
Han, Z. J., Ye, Q. X., and Jiao, J. B. 2008. Online feature evaluation for object tracking using kalman Filter. IEEE Conference on ICPR.
[6]
Cuevas, E., Zaldivar, D., and Rojas, R. 2005. Particle filter for vision tracking. Technical Report B, Fachbereich Mathematikund Informatik, Freie Universität Berlin.
[7]
Serre, T. 2006. Learning a dictionary of shape-components in visual cortex: Comparison with neurons, humans and machines. Ph.D. dissertation, MIT.
[8]
Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma, Y. 2008. Robust Face Recognition Via Sparse Representation. IEEE Trans. PAMI. 2037--2041.
[9]
Hansen, M., and Yu, B. 2001. Model selection and the minimum description length principle. Journal of the American Statistical Association. 746--774.
[10]
Yang, J., Frangi, A. F., Yang, J. Y., Zhang, D., and Jin, Z. 2005. KPCA Plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition. IEEE Trans. PAMI. 230--244.
[11]
Matthews, I., Ishikawa, T., and Baker, S. 2004. The template update problem. IEEE Trans. PAMI. 810--815.
[12]
VIVID Tracking Evaluation Web Site at: http://www.vividevaluation.ri.cmu.edu/datasets/datasets.html.
[13]
CAVIAR Test Case Scenarios at: http://homepages.inf.ed.ac.uk/rbf/CAVIAR.
[14]
SDL data set at: http://coe.gucas.ac.cn/SDL-Homepage/resource.html.
[15]
Cuevas, E., Zaldivar, D., and Rojas, R. 2005. Kalman filter for vision tracking. Technical Report B, Fachbereich Mathematikund Informatik, Freie Universität Berlin.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICIMCS '10: Proceedings of the Second International Conference on Internet Multimedia Computing and Service
December 2010
218 pages
ISBN:9781450304603
DOI:10.1145/1937728
  • General Chairs:
  • Yong Rui,
  • Klara Nahrstedt,
  • Xiaofei Xu,
  • Program Chairs:
  • Hongxun Yao,
  • Shuqiang Jiang,
  • Jian Cheng
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 December 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. L1-norm minimization
  2. object tracking
  3. sparse representation

Qualifiers

  • Research-article

Funding Sources

Conference

ICIMCS '10

Acceptance Rates

Overall Acceptance Rate 163 of 456 submissions, 36%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 119
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media