skip to main content
research-article

Delaunay triangulations in O(sort(n)) time and more

Published:11 April 2011Publication History
Skip Abstract Section

Abstract

We present several results about Delaunay triangulations (DTs) and convex hulls in transdichotomous and hereditary settings: (i) the DT of a planar point set can be computed in expected time O(sort(n)) on a word RAM, where sort(n) is the time to sort n numbers. We assume that the word RAM supports the shuffle operation in constant time; (ii) if we know the ordering of a planar point set in x- and in y-direction, its DT can be found by a randomized algebraic computation tree of expected linear depth; (iii) given a universe U of points in the plane, we construct a data structure D for Delaunay queries: for any PU, D can find the DT of P in expected time O(|P| log log |U|); (iv) given a universe U of points in 3-space in general convex position, there is a data structure D for convex hull queries: for any PU, D can find the convex hull of P in expected time O(|P| (log log |U|)2); (v) given a convex polytope in 3-space with n vertices which are colored with χ ≥ 2 colors, we can split it into the convex hulls of the individual color classes in expected time O(n (log log n)2).

The results (i)--(iii) generalize to higher dimensions, where the expected running time now also depends on the complexity of the resulting DT. We need a wide range of techniques. Most prominently, we describe a reduction from DTs to nearest-neighbor graphs that relies on a new variant of randomized incremental constructions using dependent sampling.

References

  1. Aggarwal, A. 1988. Lecture notes in computational geometry. Tech. rep. 3, MIT Research Seminar Series MIT/LCS/RSS.Google ScholarGoogle Scholar
  2. Ailon, N., Chazelle, B., Clarkson, K. L., Liu, D., Mulzer, W., and Seshadhri, C. 2010. Self-improving algorithms. SIAM J. Comput. To appear. (Manuscript at arXiv:0907.0884v2. See also SODA 2006 and SoCG 2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Albers, S., and Hagerup, T. 1997. Improved parallel integer sorting without concurrent writing. Inform. and Comput. 136, 1, 25--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Amenta, N., Attali, D., and Devillers, O. 2007. Complexity of Delaunay triangulation for points on lower-dimensional polyhedra. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM-SIAM, 1106--1113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Amenta, N., Choi, S., and Rote, G. 2003. Incremental constructions con BRIO. In Proceedings of the 19th Annual ACM Symposium on Computing Geometry (SoCG). ACM, 211--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Amir, A., Efrat, A., Indyk, P., and Samet, H. 2001. Efficient regular data structures and algorithms for dilation, location, and proximity problems. Algorithmica 30, 2, 164--187.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Andersson, A., Hagerup, T., Nilsson, S., and Raman, R. 1998. Sorting in linear time? J. Comput. Syst. Sci. 57, 1, 74--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Arora, S., and Barak, B. 2009. Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Attali, D., and Boissonnat, J.-D. 2004. A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces. Disc. Comput. Geom. 31, 3, 369--384. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Batcher, K. E. 1968. Sorting networks and their applications. In Proceedings of the AFIPS Spring Joint Computer Conferences. ACM, 307--314. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ben-Or, M. 1983. Lower bounds for algebraic computation trees. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing (STOC). ACM, 80--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Bentley, J. L., Weide, B. W., and Yao, A. C. 1980. Optimal expected-time algorithms for closest-point problems. ACM Trans. Math. Softw. 6, 563--580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Bern, M., Eppstein, D., and Gilbert, J. 1994. Provably good mesh generation. J. Comput. System Sci. 48, 3, 384--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Bern, M., Eppstein, D., and Teng, S.-H. 1999. Parallel construction of quadtrees and quality triangulations. Internat. J. Comput. Geom. Appl. 9, 6, 517--532.Google ScholarGoogle ScholarCross RefCross Ref
  15. Boissonnat, J.-D., and Yvinec, M. 1998. Algorithmic Geometry. Cambridge University Press, Cambridge, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Buchin, K. 2007. Organizing point sets: Space-filling curves, Delaunay tessellations of random point sets, and flow complexes. Ph.D. dissertation, Free University Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000003494.Google ScholarGoogle Scholar
  17. Buchin, K. 2008. Delaunay triangulations in linear time? (part I). arXiv:0812.0387.Google ScholarGoogle Scholar
  18. Buchin, K. 2009. Constructing Delaunay triangulations along space-filling curves. In Proceedings of the 17th Annual European Sympos. Algorithms (ESA). Springer-Verlag, 119--130.Google ScholarGoogle ScholarCross RefCross Ref
  19. Callahan, P. B., and Kosaraju, S. R. 1995. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. J. ACM 42, 1, 67--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Chan, T. M. 2002. Closest-point problems simplified on the RAM. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM-SIAM, 472--473. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Chan, T. M. 2008. Well-separated pair decomposition in linear time? Inf. Proc. Lett. 107, 5, 138--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Chan, T. M., and Pǎtraşcu, M. 2009. Transdichotomous results in computational geometry, I: Point location in sublogarithmic time. SIAM J. Comput. 39, 2, 703--729. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Chan, T. M., and Pǎtraşcu, M. 2010. Transdichotomous results in computational geometry, II: Offline search. arXiv:1010.1948 (see also STOC 2007).Google ScholarGoogle Scholar
  24. Chazelle, B. 1992. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J. Comput. 21, 4, 671--696. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., and Teillaud, M. 2002. Splitting a Delaunay triangulation in linear time. Algorithmica 34, 1, 39--46.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Chazelle, B., and Mulzer, W. 2009a. Computing hereditary convex structures. In Proceedings of the 25th Annual ACM Symposium on Computing Geometry (SoCG). ACM, 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Chazelle, B., and Mulzer, W. 2009b. Markov incremental constructions. Disc. Comput. Geom. 42, 3, 399--420.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Chew, L. P., and Fortune, S. 1997. Sorting helps for Voronoi diagrams. Algorithmica 18, 2, 217--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Clarkson, K. L. 1983. Fast algorithms for the all nearest neighbors problem. In Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, 226--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Clarkson, K. L., and Shor, P. W. 1989. Applications of random sampling in computational geometry. II. Disc. Comput. Geom. 4, 5, 387--421.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2009. Introduction to Algorithms, 3rd Ed. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. 2008. Computational Geometry: Algorithms and Applications, 3rd Ed. Springer-Verlag, Berlin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. de Berg, M., van Kreveld, M., and Snoeyink, J. 1995. Two- and three-dimensional point location in rectangular subdivisions. J. Algorithms 18, 2, 256--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Djidjev, H. N., and Lingas, A. 1995. On computing Voronoi diagrams for sorted point sets. Internat. J. Comput. Geom. Appl. 5, 3, 327--337.Google ScholarGoogle ScholarCross RefCross Ref
  35. van Emde Boas, P. 1977. Preserving order in a forest in less than logarithmic time and linear space. Inf. Process. Lett. 6, 3, 80--82.Google ScholarGoogle ScholarCross RefCross Ref
  36. van Emde Boas, P., Kaas, R., and Zijlstra, E. 1976. Design and implementation of an efficient priority queue. Math. Systems Theory 10, 2, 99--127.Google ScholarGoogle ScholarCross RefCross Ref
  37. Fredman, M. L. 1976. How good is the information theory bound in sorting? Theoret. Comput. Sci. 1, 4, 355--361.Google ScholarGoogle ScholarCross RefCross Ref
  38. Fredman, M. L., and Willard, D. E. 1993. Surpassing the information theoretic bound with fusion trees. J. Comput. System Sci. 47, 3, 424--436. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Gabow, H. N., Bentley, J. L., and Tarjan, R. E. 1984. Scaling and related techniques for geometry problems. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing (STOC). ACM, 135--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Han, Y. 2004. Deterministic sorting in O(n log log n) time and linear space. J. Algorithms 50, 1, 96--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Han, Y., and Thorup, M. 2002. Integer sorting in O(n &sqrt; log log n) expected time and linear space. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, 135--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Harel, D., and Tarjan, R. E. 1984. Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13, 2, 338--355. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Iacono, J., and Langerman, S. 2000. Dynamic point location in fat hyperrectangles with integer coordinates. In Proceedings of the 12th Canad. Conf. Comput. Geom. (CCCG). CCCG, 181--186.Google ScholarGoogle Scholar
  44. Isenburg, M., Liu, Y., Shewchuk, J. R., and Snoeyink, J. 2006. Streaming computation of Delaunay triangulations. ACM Trans. Graph. (Proc.) 25, 3, 1049--1056. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Karlsson, R. G. 1985. Algorithms in a Restricted Universe. Ph.D. dissertation, University of Waterloo. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Karlsson, R. G., and Overmars, M. H. 1988. Scanline algorithms on a grid. BIT 28, 2, 227--241.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Kirkpatrick, D., and Reisch, S. 1984. Upper bounds for sorting integers on random access machines. Theoret. Comput. Sci. 28, 3, 263--276.Google ScholarGoogle ScholarCross RefCross Ref
  48. Liu, Y., and Snoeyink, J. 2005. A comparison of five implementations of 3d Delaunay tesselation. In Combinatorial and Computational Geometry, MSRI Publications, vol. 52. Cambridge University Press, Cambridge, UK, 439--458.Google ScholarGoogle Scholar
  49. Löffler, M., and Mulzer, W. 2011. Triangulating the square and squaring the triangle: quadtrees and Delaunay triangulations are equivalent. In Proceedings of the 22nd Annual ACM-SIAM Symposium Discrete Algorithms (SODA). ACM-SIAM, 1759--1777. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Mehlhorn, K. 1984. Data Structures and Algorithms 1: Sorting and Searching. Monographs in Theoretical Computer Science. An EATCS Series, vol. 1. Springer-Verlag, Berlin, Germany.Google ScholarGoogle Scholar
  51. Miller, G. L., Teng, S.-H., Thurston, W., and Vavasis, S. A. 1997. Separators for sphere-packings and nearest neighbor graphs. J. ACM 44, 1, 1--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Morton, G. 1966. A computer oriented geodetic data base and a new technique in file sequencing. Tech. rep., IBM Ltd., Ottawa, Canada.Google ScholarGoogle Scholar
  53. Motwani, R., and Raghavan, P. 1995. Randomized Algorithms. Cambridge University Press, Cambridge, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Mulmuley, K. 1994. Computational Geometry: An Introduction through Randomized Algorithms. Prentice-Hall, Upper Saddle River, NJ.Google ScholarGoogle Scholar
  55. Ohya, T., Iri, M., and Murota, K. 1984a. A fast Voronoi-diagram algorithm with quaternary tree bucketing. Inf. Proc. Lett. 18, 4, 227--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Ohya, T., Iri, M., and Murota, K. 1984b. Improvements of the incremental method for the Voronoi diagram with a comparison of various algorithms. J. Oper. Res. Soc. Japan 27, 306--337.Google ScholarGoogle ScholarCross RefCross Ref
  57. Overmars, M. H. 1987. Computational geometry on a grid: An overview. Tech. rep. RUU-CS-87-04, Rijksuniversiteit Utrecht.Google ScholarGoogle Scholar
  58. Preparata, F. P., and Shamos, M. I. 1985. Computational Geometry: An Introduction. Texts and Monographs in Computer Science. Springer-Verlag, Berlin, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Raman, R. 1996. Priority queues: Small, monotone and trans-dichotomous. In Proceedings of the 4th Annual European Symposium on Algorithms (ESA). Springer-Verlag, 121--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Schönhage, A. 1979. On the power of random access machines. In Proceedings of the 6th International Colloquium on Automata Language Programming (ICALP). Springer-Verlag, 520--529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Seidel, R. 1984. A method for proving lower bounds for certain geometric problems. Tech. rep. TR84-592, Cornell University, Ithaca, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Su, P., and Drysdale, R. 1997. A comparison of sequential Delaunay triangulation algorithms. Comput. Geom. Theory Appl. 7, 361--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Thorup, M. 1998. Faster deterministic sorting and priority queues in linear space. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM-SIAM, 550--555. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. van Kreveld, M. J., Löffler, M., and Mitchell, J. S. B. 2008. Preprocessing imprecise points and splitting triangulations. In Proceedings of the 19th Annual International Symposium on Algorithms in Computing (ISAAC). Springer-Verlag, 544--555. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. van Leeuwen, J., and Tsakalides, A. 1988. An optimal pointer machine algorithm for finding nearest common ancestors. Tech. rep. RUU-CS-88-17, Department of Information and Computing Sciences, Utrecht University.Google ScholarGoogle Scholar
  66. Willard, D. E. 2000. Examining computational geometry, van Emde Boas trees, and hashing from the perspective of the fusion tree. SIAM J. Comput. 29, 3, 1030--1049. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Zhou, S., and Jones, C. B. 2005. HCPO: an efficient insertion order for incremental Delaunay triangulation. Inform. Proc. Lett. 93, 1, 37--42. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Delaunay triangulations in O(sort(n)) time and more

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Journal of the ACM
      Journal of the ACM  Volume 58, Issue 2
      April 2011
      102 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/1944345
      Issue’s Table of Contents

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 April 2011
      • Accepted: 1 October 2010
      • Revised: 1 August 2010
      • Received: 1 December 2009
      Published in jacm Volume 58, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader