skip to main content
10.1145/1967701.1967714acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article

Decidability and complexity for the verification of safety properties of reasonable linear hybrid automata

Published:12 April 2011Publication History

ABSTRACT

This paper identifies an industrially relevant class of linear hybrid automata (LHA) called reasonable LHA for which parametric verification of safety properties with exhaustive entry conditions can be done in polynomial time and time-bounded reachability with exhaustive entry conditions can be decided in nondeterministic polynomial time for non-parametric verification and in exponential time for parametric verification. Deciding whether an LHA is reasonable is shown to be decidable in polynomial time.

References

  1. M. Agrawal, P. S. Thiagarajan. The Discrete Time Behavior of Lazy Linear Hybrid Automata. Proc. HSCC 2005, LNCS 3414, 55--69, Springer 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Alur, T. A. Henzinger, P. H. Ho. Automatic symbolic verification of embedded systems. IEEE Trans. Software Eng. 22(3): 181--201, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. T. Brihaye, Ch. Michaux. On the expressiveness and decidability of o-minimal hybrid systems. Journal of Complexity 21(4): 447--478, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. W. Damm, G. Pinto, S. Ratschan. Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. Int. J. Found. Comput. Sci. 18(1): 63--86, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  5. W. Damm, H. Dierks, S. Disch, W. Hagemann, F. Pigorsch, C. Scholl, U. Waldmann, B. Wirtz. Exact and Fully Symbolic Verification of Linear Hybrid Automata with Large Discrete State Spaces. Science of Computer Programming. Special Issue on Automated Verification of Critical Systems, Editor M. Roggenbach, Accepted for publication, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Dolzmann and T. Sturm. Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2):2--9, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. E. Fainekos, G. J. Pappas. Robustness of temporal logic specifications. Proc. FATES/RV 2006, LNCS 4262, pp. 178--192, Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. Frehse, S. K. Jha, B. H. Krogh. A counterexample guided approach to parameter synthesis for linear hybrid automata. Proc. HSCC 2008, LNCS 4981, pp. 187--200, Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G. Frehse. Tools for the verification of linear hybrid automata models, Handbook of Hybrid Systems Control, Theory - Tools - Applications. Cambridge University Press, Cambridge, 2009.Google ScholarGoogle Scholar
  10. S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid systems. In Proc. CAV 2008, LNCS 5123, pp. 190--203, Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. A. Henzinger, P. W. Kopke, A. Puri, P. Varaiya. What's decidable about hybrid automata? Journal of Computer and System Sciences 57(1): 94--124, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic Analysis of Nonlinear Hybrid Systems IEEE Trans. on Automatic Control 43:540--554, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  13. C. Ihlemann and V. Sofronie-Stokkermans. System description: H-PILoT. In Proc. CADE 2009, LNAI 5663, pp. 131--139, Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Jha, B. A. Brady, and S. A. Seshia Symbolic Reachability Analysis of Lazy Linear Hybrid Automata Proceedings of FORMATS 2007, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. L. Khachian. A polynomial time algorithm for linear programming. Soviet Math. Dokl. 20:191--194, 1979.Google ScholarGoogle Scholar
  16. M. Koubarakis. Tractable disjunctions of linear constraints: basic results and applications to temporal reasoning. Theor. Comput. Sci. 266: 311--339, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Koubarakis and S. Skiadopoulos. Querying temporal and spatial constraint networks in PTIME. Artificial Intelligence 123: 223--263, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. G. Lafferriere, G. J. Pappas, S. Sastry. O-Minimal hybrid systems. Mathematics of Control, Signals, and Systems, 13(1):1--21, 2000.Google ScholarGoogle Scholar
  19. G. Lafferriere, G. J. Pappas, S. Yovine. A new class of decidable hybrid systems. Proc. HSCC 1999, LNCS 1569, pp.137--151, Springer, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. J. S. Miller. Decidability and complexity results for timed automata and semi-linear hybrid automata. Proc. HSCC 2000, LNCS 1790, pp. 296--309, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. Proc. TACAS 2008, LNCS 4963, pp. 337--340, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: A maximal tractable subclass of Allen's interval algebra. Journal of the ACM 42(1): 43--66, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Platzer and J.-D. Quesel. Logical verification and systematic parametric analysis in train control. Proc. HSCC 2008, LNCS 4981, pp. 646--649, Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. Platzer and J.-D. Quesel. European train control system: A case study in formal verification. Proc. ICFEM 2009, LNCS 5885, pp. 246--265, Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. Proc. CADE-20, LNAI 3632, pp. 219--234, Springer, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. V. Sofronie-Stokkermans. Efficient hierarchical reasoning about functions over numerical domains. In Proc. KI 2008, LNAI 5243, pp.135--143, Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. V. Sofronie-Stokkermans. Hierarchical reasoning for the verification of parametric systems. Proc. IJCAR 2010, LNAI 6173, pp. 171--187, Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. E. D. Sontag. Real addition and the polynomial hierarchy. Inf. Proc. Letters 20(3):115--120, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. Swaminathan, M. Fränzle. A symbolic decision procedure for robust safety of timed systems. Proc. TIME 2007, p. 192, IEEE Computer Society, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. G. J. Tee. Khachian's efficient algorithm for linear inequalities and linear programming. ACM SIGNUM Newsletter Archive 15(1):13--15, 1980. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. F. Wang. Symbolic Parametric Safety Analysis of Linear Hybrid Systems with BDD-Like Data-Structures. IEEE Trans. Software Eng. 31(1): 38--51, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Decidability and complexity for the verification of safety properties of reasonable linear hybrid automata

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          HSCC '11: Proceedings of the 14th international conference on Hybrid systems: computation and control
          April 2011
          330 pages
          ISBN:9781450306294
          DOI:10.1145/1967701
          • General Chair:
          • Marco Caccamo,
          • Program Chairs:
          • Emilio Frazzoli,
          • Radu Grosu

          Copyright © 2011 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 12 April 2011

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate153of373submissions,41%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader