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Abstract
We present a modular sensor network platform capable of sup-

porting a wide range of applications. We developed a platform to
support a broad spectrum of scenarios, instantiating our system for
applications on the ground, in the water, and in the air. Our sys-
tem has operated in the field for over 240 days with month long
continuous deployments, measuring positions, temperatures, pres-
sures, and rainfall, while computing cattle behaviors, event loca-
tions, and future river level. We use this experimental experience
to discuss the lessons learned in designing and using a modular and
multi-functional system.

1 Introduction
We wish to develop a multi-functional sensing platform to en-

able a large and heterogeneous range of applications in air, on
ground, and in water. Our sensing platform satisfies our design
requirements for a flexible and modular sensor node including:

• Easy addition and use of many sensor types
• Easy addition and use of many communication types
• Easy reconfiguration and programming of the system, both

within a specific application and for switching to a different
application

We instantiated this sensor network system in three different ap-
plication areas: (1) virtual fencing for cattle herds, (2) underwater
monitoring of coral reefs, and (3) river flood prediction. Table 1
demonstrates the variability of these applications on our system.
Each has different environmental needs (ranging from mobile to
underwater to covering large geographic areas) and different usage
models (ranging from regular, fast operation patterns to variable,
very slow patterns).

Application Virtual
Fencing

Coral
Reefs

River
Floods

Mobile or Fixed Mobile Fixed Fixed
Coverage Area 1 km 10s km 100s km
Operational Life Months Months Years
Event Time Scales Sec 10s Sec Min
Number of Events 6-12 10-12 12-15
Scheduled Events Interval Interval Time
Sensor Operation Polled Polled On Access
Number of Log Files 4-6 4-6 8-10
Ease of Sys Access Easy Difficult Moderate

Table 1. Comparison of Applications on System

In successfully implementing these applications, we developed
a platform with over 240 days of experimental operation, typical
active power usage of 155 mW, support for 6 sensor types and
4 communication types, and solving 3 different algorithmic prob-
lems. The modularity of our system enables 80 to 90% sharing of
code between these applications, speeding development and aiding

debugging. We also learned useful lessons about designing multi-
functional systems, UART multiplexing, communication abstrac-
tions, and power management design among other lessons.

This paper is organized as follows. Section 2 discusses related
systems. Section 3 describes the system architecture and design.
Section 4 reports our experimental results characterizing the plat-
form in terms of communication, power, operational behavior, and
deployments. Section 5 describes lessons we learned through the
design and implementation of our sensor platform.

2 Related Work
We build on several years of important work in designing and

fielding sensor network systems on a variety of platforms including
the Mote [1, 7, 8], Fleck [14], and Cricket [10]. Our own experience
with these systems has led us to the design decisions described in
this paper.

Many of these systems have been deployed for a variety of ap-
plications: measuring light intensity under foliage (LUSTER [12]),
performing detailed studies of a Redwood tree [13], monitoring cat-
tle (Flecks [14]), measuring high-altitude environmental data (Per-
maSense [3]), and monitoring fatigue in bridges [5]. While not for
a specific application, some platforms provide large scale deploy-
ment for basic networking research such as the Trio Testbed which
had nearly 600 Motes [4].

While all of these platforms provide good options for sensor
network research, none supports a full range of communication and
sensing options while also supporting complicated algorithms. As
these are vital requirements for our projects, we outline in this paper
the design of a new platform as well as our operating system, which
takes a similar approach to TinyOS [6].

3 System Architecture and Design
The specific requirements for a modular sensor network system

include:

• Low-level support for all reasonable sensor types (resistive,
interrupt, serial, etc.) along with easy high-level addition of
new sensors using these types

• Wireless communication support for all projects and easy ad-
dition of new communication devices

• High-level reconfiguration of the system and the ability to do
so in the field without a direct cable connection to a device

• Long-term (over a year) storage of data
In response to these requirements, we have designed a hardware

platform, supporting operating system, and software infrastructure
for applications. Figure 1 and 2 show the block diagram of the hard-
ware architecture and operating system, respectively. In defining
our system, we focused on the following areas: processing, com-
munication, sensing, power management, data storage, and config-
uration.



Figure 1. Hardware architecture block diagram.
3.1 Processing

The key hardware requirement is a processor with a relatively
large amount of on-chip RAM (40K), flash (512K), input-output
pins, and other features. We selected the LPC2148 ARM7 proces-
sor [9] which satisfies these requirements and balances the trade-off
between power usage and processing. Others we considered tended
towards the extremes of this spectrum with the ATmega128 on the
low end and the Blackfin ADSP-BF533 on the high end. The low
end systems do not provide sufficient internal memory to enable a
large range of functionality; using the high end systems would al-
low us to run more complex operating systems such as Linux, but
at the cost of higher energy usage and reduced system lifetime. Our
system does support using either of these processor types in addi-
tion to the main processor where the application requires it. How-
ever, the LPC processor provides a reasonable mix of functionality
for most applications.

Our base software supports all the various operations necessary
for a variety of projects: measurements, communication, failure
checking, logging, algorithms, and other activities. To process these
operations, we designed a non-preemptive multi-tasking scheduler-
based system utilizing the real time clock and millisecond timers.
3.2 Communication

Seamless transitions between communication devices require
sufficient protocols and their hardware support. Here, the LPC2148
provides UARTs, SPI, I2C, and USB slave. To avoid the 2 UART
limit and to successfully manage a variety of UART devices, we
include a low-power FPGA which bidirectionally buffers up to four
additional serial ports allowing simultaneous communication with
up to 6 serial devices. Also, we add a 900 MHz Aerocomm AC4790
radio to all boards, chosen due to its claim of a 32 kilometer com-
munication range and initial testing showing reasonable ranges on
small, local scales.

We need several abstraction layers to avoid exposing communi-
cation switching complexities to the end user but still enable easy
addition of other devices. We start with four low-levels interfac-
ing with the microprocessor: the FPGA access code, the UARTs,
the SPI interface, and the I2C interface. Just above this layer, we
provide an AC4790 layer to interface with the Aerocomm built-in
communication protocols.

On top of these low-level accesses, we provide a communica-
tion system that further abstracts what communication device and
what message. Any module can create a message that is added to
a message queue that the scheduler processes. A module receiving
a message will only handle those it recognizes and for which it has
a handler capable of processing that type of message. This enables
different projects to react differently to the same message as well as
to create project specific messages that do not interfere with another
project’s modules.
3.3 Sensing

Our system supplies several base sensors: temperature, com-
pass, accelerometers, and GPS. These base sensors help provide
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Figure 2. Operating system block diagram.

system information regarding location, position, and internal tem-
perature, useful data for almost every project. Most projects require
additional sensors of a variety of connection types. We support this
by exposing as many input-output (IO) pins as possible and en-
abling connections to expansion boards. Our expansion board con-
nection provides IO pins, UART ports, ADC pins, I2C bus access,
and SPI bus access.

We provide ease-of access and addition through several software
layers. We start with the basic hardware, developing ADC code and
GPS access code in addition to existing I2C and UART layers. On
top of this, the sensor layer abstracts out the different access types
each sensor uses. Adding a sensor requires only placing it in the list
of available sensors within the sensing layer; it is then available and
supported through the existing sensor functions to all higher layers.
3.4 Power Management

To measure and control the power, we have a charge circuit al-
lowing solar and DC charging of single cell lithium-polymer (LiPo)
batteries. This circuit is based on the LTC1733 which also provides
measurement of the charge current so we know the amount of power
entering the system. We use single cell LiPo batteries to eliminate
the need for switching regulators; supporting a wider range of bat-
teries requires the addition of a switching regulator and different
charging circuitry. For understanding the amount exiting the sys-
tem, we add a battery circuit (ISL6295) to each lithium-polymer
battery. Within the circuit, we measure current (both charge and
discharge), voltage, and temperature.
3.5 Data Storage

The LPC2148 provides 40K of on-chip storage allowing buffer-
ing of serial devices and log files, while leaving sufficient space for
user algorithms. Beyond this, we add a 32K FRAM and a mini-SD
card slot. We developed code to enable fast and easy access of the
FRAM and support streaming data to/from it. The SD card requires
a file system so we implemented a FAT file system to ensure read-
ability of the SD cards on regular computer systems. On top of the
FAT system, we added a logging system that enables creation and
writing of many concurrent log files.
3.6 Configuration

We designed a bootloader program to load new program code
into the system. The bootloader reads the program file from the SD
card allowing very easy reconfiguration. We update the program by
swapping SD cards or by uploading a file via a serial or radio link.
Once the system starts operation, the FRAM provides fine-grained
configuration through variables permanently stored in it. Between
these two configuration options, we can easily switch any node to
a different operation within a project, a different code version, or a
different project.



Device Physical Layer Rate Real Rate Maximum Range Typical Range Success Rate (at
Typical)

900 MHz Radio 57600b/s 7200b/s 3km 100m 25-50%
144 MHz Radio 1200b/s 818b/s 60km 50km 90%
Bluetooth 1Mbit/s 92100b/s 50m 5m 100%
Serial Cable 115200b/s 92100b/s 300m 1m 100%
Optical Modem 1Mbit/s 800Kbit/s 4m 3m 90%
Acoustic Modem 300b/s 22b/s 500m 400m 56%

Table 2. Communication results based on field deployments.

Component Current (mA)
Base Board Sleep Mode 2
CPU Low Usage 16
CPU Max Usage 59
FPGA <1
Base Sensors 6
GPS no fix 44
GPS fix 35–40
900 MHz Radio Receive Only 20
900 MHz Radio Transmit 1 Hz 73
Cow Extension Board Standby 7
Cow Extension Board On 29
Cow Shocking 200–400
Underwater Extension Standby <1
Underwater Extension Active 15
Acoustic Receive 110
Acoustic Transmit 200
Optical Receive 15
Optical Transmit 100–500
River Extension Board <1
144 MHz Radio Transmit 5000

Table 3. Subsystem power usage.

4 Experiments and Results
We have instantiated the sensor network system and deployed

it in the field in the context of three applications: monitoring and
controlling cattle, monitoring coral reefs, and monitoring and pre-
dicting river floods. These deployments were used to characterize
the performance of our sensor network system and also to evaluate
the application solutions.

4.1 Communications
We logged data regarding the number of bytes and the type of

messages sent. These data describe the behaviors of the different
communication methods, highlighting the need for a variety of dif-
ferent options and the trade-offs between then. Table 2 summarizes
our results, showing the data rates, ranges, and success percentages
for the various communication methods used. Also shown is the
wide spectrum of communication ranges at which our system can
operate, from 1 meter to 60 kilometers. Maximum range defines the
maximum distance at which we have seen the device function, not
the manufacturer specified range (Aerocomm states 32 kilometers,
but we have only achieved 3). Our final column of the table demon-
strates the communication success rates, based on our experiments.
The lowest rates reflect the difficulty of communication medium in
the case of the acoustic modems and limitations of the Aerocomm
module in the case of the 900 MHz radios.

4.2 Power Usage and Charging
We characterized the power usage of our system through our

field experiments and directed lab testing to understand what uses
the most power and what trade-offs we incur through our design
choices. Table 3 outlines the power usage of the different system
components as well as the components added by each project, sum-
marizing the total current requirement of each. Some systems have
additional operational requirements affecting their energy such as
the GPS which needs approximately 1 minute of operation to obtain
a location fix or the radio which needs to remain in receive mode
without additional protocols. Application needs including shock-

Location Application Average Charge Current (mA)
Massachusetts River Flooding 11.28
Honduras River Flooding 92.12
New Mexico Virtual Fencing 29.67

Table 4. Daily average charge current.
ing, additional sensors, and specialized communication dominate
our power usage, reducing issues with the higher power consump-
tion of our base system.

With such high power usage, we need to focus on power man-
agement and, therefore, gather charge current and discharge current
measurements. Figure 3 shows the average daily charge current for
three different geographic locations: Massachusetts, Honduras, and
New Mexico. In these experiments, the Massachusetts and Hon-
duras locations used 2 watt solar cells while the New Mexico loca-
tion used 1.5 watt solar cells. Table 4 summarizes this information,
providing the average daily values seen by each system. Collecting
this data enables intelligent power management on the system such
as significantly reducing operations at night when no solar recharg-
ing occurs.
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Figure 3. Charge current in Honduras, Dover, Massachusetts,
and New Mexico. Days offset for visibility.
4.3 Deployments

The applications stress-tested the system in several ways, utiliz-
ing a suite of ground, aerial, and water sensors, and several modali-
ties of communication through air (short range and long range) and
water (short range and long range). Although each system has been
deployed many times, we focus on the most recent experiments.
Comparison of Applications

Overall all applications share the same base hardware and base
software, providing 80 to 90% of the software for any given project.
Table 1 outlines key features of our system and how each applica-
tion uses them. This clearly demonstrates the diversity of applica-
tions our system can support.
Virtual Fencing

Virtual fencing aims to help ranchers control their cattle through
a mobile sensor network [11]. This network, with nodes attached to
the heads of the cattle, monitors the location of each animal and de-
termines if the animal has reached the edge of the “fence,” a virtual
boundary defined by the rancher. If the animal heads out of bounds,
the system provides stimulus in the form of shock and/or sound to
direct the animal back within the virtual fence.



On the hardware side, to control the cattle, the system re-
quires an expansion board providing shock and sound capabilities
as shown in Figure 5. In this application, we use all the base soft-
ware, providing 87% of the software, adding complex, application-
specific algorithms as described in Figure 4. These algorithms de-
fine a virtual fence within which we keep the cattle through direc-
tional queues determined by head orientation.

At the time of writing, the virtual fence system has operated for
over 5 months in New Mexico at a ranch affiliated with the United
States Department of Agriculture (USDA). Here we deployed 5
nodes on cattle, roaming over an area of 5 square kilometers, with a
sixth node as a stationary reference and a seventh as a mobile base
station.
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Figure 4. The core software usage and extensions for the virtual
fencing project.

Figure 5. The core hardware usage and extensions for the vir-
tual fencing project.

Coral Reefs: AquaNodes
Coral reef monitoring provides a valuable tool for biologists re-

searching issues related to the flora and fauna existing in the reef
habitat. An underwater sensor network provides scientists with an
intelligent system, regularly transmitting data to them and inform-
ing them of the system status.

The AquaNodes require extending the base hardware and soft-
ware systems as seen in Figures 6 and 7. On the hardware side, this
involves adding an expansion board with a 24-bit AD converter to
provide high-precision measurements of external temperature and
pressure. The expansion board also has a Atmel ATmega164P low
power processor to enable more power management options. Since
the radio does not work underwater, we also add acoustic and op-
tical modems. The optical system is used by divers or a robot to
download the full logs, while the acoustic modem is used for peri-
odic status updates. To aid deployment, the system has a bluetooth
radio and an LCD screen operated through the accelerometer and
hall effect sensors, enabling configuration and testing while in the
water. The base software provides 83% of the software needed by
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Figure 7. The core software usage and extensions for the
AquaNodes.

the application, including the 900 MHz radio and GPS, which help
with initial configuration on land.

We have deployed the AquaNodes in rivers, lakes and on the
coral reefs at the Gump station in Moorea. During our last ocean
deployment in August 2008, we placed 8 nodes in the reef for a few
hours most days over the course of two weeks. We were unable to
leave the system unattended due to concern over theft.
Flood Prediction

River flood prediction intends to warn communities of incom-
ing river floods, gaining time for them to protect their property and
evacuate [2]. A sensor network provides such predictions through
local sensing and self-calibrated models allowing much easier in-
stallation and operation in any river basin in the world. The sys-
tem measures rainfall, air temperature, and water pressure to predict
river level 24 hours in advance.

This application modifies the base hardware as shown in Figure
8. All the sensors are external to the system so an extension board
is needed to connect with them; each also uses the system’s variety
of access options as temperature is resistive, rainfall is interrupt-
driven, and pressure is a RS485-based measurement. While local
sensing clusters communicate via the AC4790 radios, to cover the
large geographic area of the basin, some nodes communicate via
144 MHz radios. These radios require a modem, which we place
on an expansion board used only in those few nodes.

Figure 9 shows the software additions necessary. Because we
do not use the GPS or many of the internal sensors but do use the
same sensor layer, the base code supplies 90% of the system code
with the additions being the distributed modeling and prediction
algorithms.

We deployed the river flood system in two locations: Mas-
sachusetts and Honduras. At the Massachusetts site, we placed 5



sensors in a square kilometer of area for 5 weeks during fall 2010.
In Honduras, we deployed 6 nodes covering 100 square kilometers
for 4 weeks. One node provided the office interface, 2 nodes pro-
vided 144 MHz communication, and 4 nodes provided sensing.

Figure 8. The core hardware usage and extensions for the river
flooding project.
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5 Lessons Learned

Our goal has been to develop an easily reconfigurable sensor
network architecture. We have learned several lessons designing
and using our system.

The startup costs of designing our multi-functional system have
been high both on the hardware and the software sides. With such
a variety of needs, we found it difficult to initially design each part
with the necessary flexibility, often requiring development first for
one project style and later modification for the other. However,
by sharing the same base hardware and software, debugging is very
fast. This shared debugging, supporting at least 80% of the software
and at least as much of the hardware, far outweighs the difficult
startup costs such that we suggest others use, and intend to continue
using ourselves, multi-application platforms.

The predominance of serial peripherals ensures that no proces-
sor exists that provides enough serial connections. Having some
form of external serial multiplexer is necessary, whether it is a sim-
ple serial multiplexer, a SPI-to-UART converter, or a more compli-
cated FPGA as we use. This allows for simultaneous use of several
communication methods and sensors, a situation that has arisen in
all three of our applications.

Smart power management enables continuous operation for the
applications we instantiated. However, it is easy to be optimistic
about the amount of recharging available and the low power usage
of the system. As we saw, the available solar current varied widely;
had we designed for the worst case situation, we would be unable to
take advantage of the significant solar current of the other locations.
We needed, and recommend, the ability to control many aspects

of the power system to intelligently maximize the operation of the
system and the lifetime.

6 Conclusions
We designed a multi-functional sensor network platform that en-

ables a large and heterogeneous range of applications in the air, on
the ground, and in the water. This system allows easy addition of
sensors and communication types, reconfiguration of nodes, data
storage and access, and user operation. This aids new application
development on the platform.

We characterized our system through three application areas:
virtual fencing of cattle, coral reef monitoring, and river flood pre-
diction. Each of these applications was deployed in the field, pro-
viding a wide variety of data on the base system in addition to ap-
plication specific data. We are currently exploring the best ways of
sharing the hardware and software of our sensor network platform
with the community.
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