skip to main content
10.1145/1978942.1979386acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

TUIC: enabling tangible interaction on capacitive multi-touch displays

Authors Info & Claims
Published:07 May 2011Publication History

ABSTRACT

We present TUIC, a technology that enables tangible interaction on capacitive multi-touch devices, such as iPad, iPhone, and 3M's multi-touch displays, without requiring any hardware modifications. TUIC simulates finger touches on capacitive displays using passive materials and active modulation circuits embedded inside tangible objects, and can be used with multi-touch gestures simultaneously. TUIC consists of three approaches to sense and track objects: spatial, frequency, and hybrid (spatial plus frequency). The spatial approach, also known as 2D markers, uses geometric, multi-point touch patterns to encode object IDs. Spatial tags are straightforward to construct and are easily tracked when moved, but require sufficient spacing between the multiple touch points. The frequency approach uses modulation circuits to generate high-frequency touches to encode object IDs in the time domain. It requires fewer touch points and allows smaller tags to be built. The hybrid approach combines both spatial and frequency tags to construct small tags that can be reliably tracked when moved and rotated. We show three applications demonstrating the above approaches on iPads and 3M's multi-touch displays.

Skip Supplemental Material Section

Supplemental Material

paper206.mp4

mp4

78.8 MB

References

  1. Barrett, G. and Omote, R. Projected-Capacitive Touch Technology. Information Display, March 2010/vol. 26, NO. 3, Society for Information Display, 17--18.Google ScholarGoogle Scholar
  2. Baudisch, P., Becker, T., and Rudeck, F. Lumino: tangible blocks for tabletop computers based on glass fiber bundles. In Proc. of CHI 2010, 1165--1174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Block, F., Haller, M., Gellersen, H., Gutwin, C., and Billinghurst, M. VoodooSketch - extending interactive surfaces with adaptable interface palettes. In Proc. of TEI 2008, 55--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chang, A. Y., Lee, W. C., and Lee, W. Y. 2010. Touchscreen Stylus. U.S. Patent US 2010/0053120 A1. Mar. 2010.Google ScholarGoogle Scholar
  5. Dietz, P. and Leigh, D. (2001). DiamondTouch: a multi-user touch technology. ACM UIST. 219--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fiala, M. ARTag, a fiducial marker system using digital techniques. In Proc. of IEEE CVPR 2005, 590--596 vol. 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fitzmaurice, W.G., Ishii, H., and Buxton, W. Bricks: laying the foundations for graspable user interfaces. In Proc. of CHI 1995, 442--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. GestureWorks. http://gestureworks.com.Google ScholarGoogle Scholar
  9. Guo, C. and Sharlin, E. Exploring the use of tangible user interfaces for human-robot interaction: a comparative study. In Proc. of CHI 2008, 121--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hinckley, K., Yatani, K., Pahud, M., Rodenhouse, J., Wilson, A., Benko, H., and Buxton, B. Pen + touch = new tools. In Proc. of UIST 2010, 27--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ishii, H., Tangible bits: beyond pixels, In Proc. of TEI 2008, xv-xxv. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ishii, H. The tangible user interface and its evolution. Communications of the ACM 2008, 32--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Izadi, S., Hodges, S., Butler, A., Rrustemi, A., and Buxton, B. ThinSight: integrated optical multi-touch sensing through thin form-factor displays. In Proc. of EDT 2007, Art. NO. 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jordà, S., Geiger, G., Alonso, M., and Kaltenbrunner, M. The reacTable: exploring the synergy between live music performance and tabletop tangible interfaces. In Proc. of TEI 2007, 139--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jordà, S., Julià, F. C., and Gallardo, D. Interactive surfaces and tangibles. XRDS: Crossroads, The ACM Magazine for Students 2010, vol. 16 (4), 21--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Liu, Y. C. and Tseng, H. H. 2009. Stylus and Electronic Device. U.S. Patent 2009/0167727 A1. Jul. 2009.Google ScholarGoogle Scholar
  17. Minami, M., Fukuju, Y., Hirasawa, K., Yokoyama, S., Mizumachi, M., Morikawa, H., and Aoyama, T. Dolphin: A practical approach for implementing a fully distributed indoor ultrasonic positioning system. In Proc. of UBICOMP 2004, 347--356.Google ScholarGoogle ScholarCross RefCross Ref
  18. NET.2971 - The Microsoft Surface domino tag. http://www.xs4all.nl/~wrb/Main/Index.htm.Google ScholarGoogle Scholar
  19. Orit Shaer and Eva Hornecker. Tangible User Interfaces: Past, Present, and Future Directions. In Foundations and Trends in Human-Computer Interaction 3,1 (2010) 1--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Patten, J., Ishii, H., Hines, J., and Pangaro, G. Sensetable: A Wireless Object Tracking Platform for Tangible User Interfaces. In Proc. of CHI 2001, 253--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Patten, J., Ishii, H., and Recht, B. Audiopad: a tag-based interface for musical performance. In Proc. of NIME 2002, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. QR code. http://www.qrcode.com/index-e.html.Google ScholarGoogle Scholar
  23. Rekimoto, J. (2002). SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. ACM CHI. 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rice, C. A., Cain, B. C., and Fawcett, K. J. Dependable coding for fiducial tags. In Proc. of UCS 2004, 155--163.Google ScholarGoogle Scholar
  25. Rice, C. A., Harle, K. R., and Beresford, R. A. Analysing fundamental properties of marker-based vision system designs. In PerCom 2006, 453--471.Google ScholarGoogle Scholar
  26. Ullmer, B., Ishii, H., and Glas, D. mediaBlocks: physical containers, transports, and controls for online media. In Proc. of SIGGRAPH 1998, 379--386. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ullmer, B., and Ishii, H. The metaDESK: models and prototypes for tangible user interfaces. In Proc. of UIST 1997, 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Underkoffler, J., and Ishii, H. Urp: a luminous-tangible workbench for urban planning and design. In Proc. of CHI 1999, 386--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Vogel, D. and Baudisch, P. 2007. Shift: A Technique for Operating Pen-Based Interfaces Using Touch. In Proc. CHI'07, 657--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Weiss, M., Wagner, J., Jennings, R., Jansen, Y., Khoshabeh, R., Hollan, D. J., and Borchers, J. SLAP widgets: bridging the gap between virtual and physical controls on tabletops. In Proc. of CHI 2009, 3229--3234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wilson, D. A. PlayAnywhere: a compact interactive tabletop projection-vision system. In Proc. of UIST 2005, 83--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Xu, D., Read, C. J., Mazzone, E., and Brown, M. Designing and testing a tangible interface prototype. In Proc. of IDC 2007, 25--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Zimmerman, D. T., Smith, R. J., Paradiso, A. J., Allport, D. and Gershenfeld, N. Applying electric field sensing to human-computer interfaces. In Proc. of CHI 1995, 280--287. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. TUIC: enabling tangible interaction on capacitive multi-touch displays
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      May 2011
      3530 pages
      ISBN:9781450302289
      DOI:10.1145/1978942

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 May 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '11 Paper Acceptance Rate410of1,532submissions,27%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader