skip to main content
10.1145/1998196.1998231acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Shortest non-trivial cycles in directed surface graphs

Published: 13 June 2011 Publication History

Abstract

Let G be a directed graph embedded on a surface of genus g. We describe an algorithm to compute the shortest non-separating cycle in G in O(g2 n log n) time, exactly matching the fastest algorithm known for undirected graphs. We also describe an algorithm to compute the shortest non-contractible cycle in G in gO(g)n log n time, matching the fastest algorithm for undirected graphs of constant genus.

References

[1]
G. Borradaile, E. D. Demaine, and S. Tazari. Polynomial-time approximation schemes for subset-connectivity problems in bounded-genus graphs. Proc. 26th Int. Symp. Theoretical Aspects Comput. Sci., 171--182, 2009. Leibniz Int. Proc. Informatics 3, Schloss Dagstuhl--Leibniz-Zentrum für Informatik. http://drops.dagstuhl.de/opus/volltexte/2009/1835.
[2]
G. Borradaile and P. Klein. An O(n log n) algorithm for maximum st-flow in a directed planar graph. J. ACM 56(2): 9:1--30, 2009.
[3]
G. Borradaile, J. R. Lee, and A. Sidiropoulos. Randomly removing $g$ handles at once. Proc. 25th Ann. ACM Symp. Comput. Geom., 371--376, 2009.
[4]
S. Cabello. Many distances in planar graphs. Proc. 17th Ann. ACM-SIAM Symp. Discrete Algorithms, 1213--1220, 2006.
[5]
S. Cabello. Finding shortest contractible and shortest separating cycles in embedded graphs. ACM Trans. Algorithms 6(2):24:1--24:18, 2010.
[6]
S. Cabello and E. W. Chambers. Multiple source shortest paths in a genus g graph. Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, 89--97, 2007.
[7]
S. Cabello, E. W. Chambers, and J. Erickson. Multiple-source shortest paths in embedded graphs. Full version of cc-msspg-07, in preparation.
[8]
S. Cabello, É. Colin de Verdière, and F. Lazarus. Finding shortest non-trivial cycles in directed graphs on surfaces. Proc. 26th Ann. ACM Symp. Comput. Geom., 156--165, 2010.
[9]
S. Cabello, É. Colin de Verdière, and F. Lazarus. Output-sensitive algorithm for the edge-width of an embedded graph. Proc. 26th Ann. ACM Symp. Comput. Geom., 147--155, 2010.
[10]
S. Cabello, É. Colin de Verdière, and F. Lazarus. Finding cycles with topological properties in embedded graphs. Preprint, October 2010. http://www.di.ens.fr/ colin/textes/09truecycle.pdf.
[11]
S. Cabello, M. DeVos, J. Erickson, and B. Mohar. Finding one tight cycle. ACM Trans. Algorithms 6(4):article 61, 2010.
[12]
S. Cabello and B. Mohar. Finding shortest non-separating and non-contractible cycles for topologically embedded graphs. Discrete Comput. Geom. 37:213--235, 2007.
[13]
E. W. Chambers, É. Colin de Verdière, J. Erickson, F. Lazarus, and K. Whittlesey. Splitting (complicated) surfaces is hard. Comput. Geom. Theory Appl. 41(1--2):94--110, 2008.
[14]
E. W. Chambers, J. Erickson, and A. Nayyeri. Homology flows, cohomology cuts. Proc. 42nd Ann. ACM Symp. Theory Comput., 273--282, 2009. Full version available at http://www.cs.uiuc.edu/ jeffe/pubs/surflow.html.
[15]
E. W. Chambers, J. Erickson, and A. Nayyeri. Minimum cuts and shortest homologous cycles. Proc. 25th Ann. ACM Symp. Comput. Geom., 377--385, 2009.
[16]
É. Colin de Verdière. Shortest cut graph of a surface with prescribed vertex set. Proc. 18th Ann. Europ. Symp. Algorithms, 100--111, 2010. Lecture Notes Comput. Sci. 6347.
[17]
É. Colin de Verdière and J. Erickson. Tightening non-simple paths and cycles on surfaces. SIAM J. Comput. 39(8):3784--3813, 2010.
[18]
E. D. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction decomposition. Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, 278--287, 2007.
[19]
D. Eppstein. Dynamic generators of topologically embedded graphs. Proc. 14th Ann. ACM-SIAM Symp. Discrete Algorithms, 599--608, 2003. ArXiv:\hrefhttp://arxiv.org/abs/cs.DS/0207082cs.DS/0207082.
[20]
J. Erickson. Parametric shortest paths and maximum flows in planar graphs. Proc. 21st Ann. ACM-SIAM Symp. Discrete Algorithms, 794--804, 2010.
[21]
J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. Discrete Comput. Geom. 31:37--59, 2004.
[22]
J. Erickson and A. Nayyeri. Shortest homologous cycles and minimum cuts via homology covers. Proc. 22nd Ann. ACM-SIAM Symp. Discrete Algorithms, 1166--1176, 2011.
[23]
J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology generators. Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, 1038--1046, 2005.
[24]
J. Erickson and P. Worah. Computing the shortest essential cycle. Discrete Comput. Geom. 44(4):912--930, 2010.
[25]
G. N. Frederickson. Fast algorithms for shortest paths in planar graphs with applications. SIAM J. Comput. 16(6):1004--1004, 1987.
[26]
J. L. Gross and T. W. Tucker. Topological graph theory. Dover Publications, 2001.
[27]
I. Guskov and Z. Wood. Topological noise removal. Proc. Graphics Interface, 19--26, 2001.
[28]
A. Hatcher. Algebraic Topology. Cambridge University Press, 2001. http://www.math.cornell.edu/hatcher/.
[29]
M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1):3--23, 1997.
[30]
P. Indyk and A. Sidiropoulos. Probabilistic embeddings of bounded genus graphs into planar graphs. Proc. 23rd Ann. ACM Symp. Comput. Geom., 204--209, 2007.
[31]
A. Itai and Y. Shiloach. Maximum flow in planar networks. SIAM J. Comput. 8:135--150, 1979.
[32]
G. F. Italiano, Y. Nussbaum, P. Sankowski, and C. Wulff-Nilsen. Improved minimum cuts and maximum flows in undirected planar graphs. Proc. 43rd Ann. ACM Symp. Theory Comput., to appear, 2011.
[33]
G. F. Italiano and P. Sankowski. Improved minimum cuts and maximum flows in undirected planar graphs. Preprint, November 2010. ArXiv:http://arxiv.org/abs/1011.28431011.2843.
[34]
L. Janiga and V. Koubek. Minimum cut in directed planar networks. Kybernetika 28(1):37--49, 1992.
[35]
H. Kaplan and Y. Nussbaum. Minimum $s-t$ cut in undirected planar graphs when the source and the sink are close. Proc. 28th Int. Symp. Theoretical Aspects Comput. Sci., 117--128, 2011. Leibniz Int. Proc. Informatics 9, Schloss Dagstuhl--Leibniz-Zentrum für Informatik. http://drops.dagstuhl.de/opus/volltexte/2011/3004.
[36]
K. Kawarabayashi and B. Mohar. Graph and map isomorphism and all polyhedral embeddings in linear time. Proc. 40th Ann. ACM Symp. Theory Comput., 471--480, 2008.
[37]
K. Kawarabayashi and B. Reed. Computing crossing number in linear time. Proc. 39th Ann ACM Symp. Theory Comput., 382--390, 2007.
[38]
P. N. Klein. Multiple-source shortest paths in planar graphs. Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, 146--155, 2005.
[39]
M. Kutz. Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time. Proc. 22nd Ann. ACM Symp. Comput. Geom., 430--438, 2006.
[40]
B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins University Press, 2001.
[41]
K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion. Combinatorica 7:105--113, 1987.
[42]
J. Reif. Minimum $s$-$t$ cut of a planar undirected network in O(n log2 n) time. phSIAM J. Comput. 12:71--81, 1983.
[43]
J. Stillwell. Classical Topology and Combinatorial Group Theory, 2nd edition. Graduate Texts in Mathematics 72. Springer-Verlag, 1993.
[44]
C. Thomassen. Embeddings of graphs with no short noncontractible cycles. J. Comb. Theory Ser. B 48(2):155--177, 1990.
[45]
K. Weihe. Maximum (s, t)-flows in planar networks in O(|V|log|V|)-time. J. Comput. Syst. Sci. 55(3):454--476, 1997.
[46]
C. Wolff-Nilsen. Min st-cut of a planar graph in O(n log log n) time. Preprint, July 2010. ArXiv: http://arxiv.org/abs/1007.36091007.3609.
[47]
Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder. Removing excess topology from isosurfaces. ACM Trans. Graphics 23(2):190--208, 2004.

Cited By

View all
  • (2020)Topologically Trivial Closed Walks in Directed Surface GraphsDiscrete & Computational Geometry10.1007/s00454-020-00255-3Online publication date: 30-Nov-2020
  • (2018)Holiest minimum-cost paths and flows in surface graphsProceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3188745.3188904(1319-1332)Online publication date: 20-Jun-2018
  • (2015)A Polynomial-time Bicriteria Approximation Scheme for Planar BisectionProceedings of the forty-seventh annual ACM symposium on Theory of Computing10.1145/2746539.2746564(841-850)Online publication date: 14-Jun-2015
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SoCG '11: Proceedings of the twenty-seventh annual symposium on Computational geometry
June 2011
532 pages
ISBN:9781450306829
DOI:10.1145/1998196
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 June 2011

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational topology
  2. topological graph theory

Qualifiers

  • Research-article

Conference

SoCG '11
SoCG '11: Symposium on Computational Geometry
June 13 - 15, 2011
Paris, France

Acceptance Rates

Overall Acceptance Rate 625 of 1,685 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)1
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Topologically Trivial Closed Walks in Directed Surface GraphsDiscrete & Computational Geometry10.1007/s00454-020-00255-3Online publication date: 30-Nov-2020
  • (2018)Holiest minimum-cost paths and flows in surface graphsProceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3188745.3188904(1319-1332)Online publication date: 20-Jun-2018
  • (2015)A Polynomial-time Bicriteria Approximation Scheme for Planar BisectionProceedings of the forty-seventh annual ACM symposium on Theory of Computing10.1145/2746539.2746564(841-850)Online publication date: 14-Jun-2015
  • (2013)Shortest non-trivial cycles in directed and undirected surface graphsProceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms10.5555/2627817.2627843(352-364)Online publication date: 6-Jan-2013
  • (2012)Global minimum cuts in surface embedded graphsProceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms10.5555/2095116.2095219(1309-1318)Online publication date: 17-Jan-2012

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media