skip to main content
10.1145/1998196.1998256acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Minors in random and expanding hypergraphs

Published:13 June 2011Publication History

ABSTRACT

We introduce a new notion of minors for simplicial complexes (hypergraphs), so-called homological minors. Our motivation is to propose a general approach to attack certain extremal problems for sparse simplicial complexes and the corresponding threshold problems for random complexes. In this paper, we focus on threshold problems. The basic model for random complexes is the Linial-Meshulam model Xk(n,p). By definition, such a complex has n vertices, a complete (k-1)-dimensional skeleton, and every possible k-dimensional simplex is chosen independently with probability p. We show that for every k,t ≥ 1, there is a constant C=C(k,t) such that for p ≥ C/n, the random complex Xk(n,p) asymptotically almost surely contains Kkt (the complete k-dimensional complex on t vertices) as a homological minor. As corollary, the threshold for (topological) embeddability of Xk(n,p) into R2k is at p=Θ(1/n).

The method can be extended to other models of random complexes (for which the lower skeleta are not necessarily complete) and also to more general Tverberg-type problems, where instead of continuous maps without doubly covered image points (embeddings), we consider maps without q-fold covered image points.

References

  1. M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free subgraphs. Ann. Discrete Math., 12:9--12, 1982.Google ScholarGoogle Scholar
  2. L. Aronshtam, N. Linial, T. Luczak, and R. Meshulam. Vanishing of the top homology of a random complex. arXiv:1010.1400v1, 2010.Google ScholarGoogle Scholar
  3. E. Babson, C. Hoffman, and M. Kahle. The fundamental group of random 2-complexes. J. Amer. Math. Soc., 24(1):1--28, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  4. B. Bollobás, P. A. Catlin, and P. Erdos. Hadwiger's conjecture is true for almost every graph. European J. Combin., 1(3):195--199, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  5. B. Bollobás and A. Thomason. Proof of a conjecture of Mader, Erdos and Hajnal on topological complete subgraphs. European J. Combin., 19(8):883--887, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. W. G. Brown, P. Erdos, and V. T. Sós. Some extremal problems on r-graphs. In New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich, 1971), pages 53--63. Academic Press, New York, 1973.Google ScholarGoogle Scholar
  7. D. C. Cohen, M. Farber, and T. Kappeler. The homotopical dimension of random 2-complexes. arXiv:1005.3383v1, 2010.Google ScholarGoogle Scholar
  8. A. Costa, M. Farber, and T. Kappeler. Topology of random 2-complexes. arXiv:1006.4229v2, 2010.Google ScholarGoogle Scholar
  9. T. K. Dey. On counting triangulations in d dimensions. Comput. Geom., 3(6):315--325, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. T. K. Dey and J. Pach. Extremal problems for geometric hypergraphs. Discrete Comput. Geom., 19(4):473--484, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  11. T. K. Dey and N. R. Shah. On the number of simplicial complexes in Rd. Comput. Geom., 8(5):267--277, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. P. Erdos. On extremal problems of graphs and generalized graphs. Israel J. Math., 2:183--190, 1964.Google ScholarGoogle ScholarCross RefCross Ref
  13. A. Flores. Über die Existenz n-dimensionaler Komplexe, die nicht in den R2n topologisch einbettbar sind. Ergeb. Math. Kolloqu., 5:17--24, 1933.Google ScholarGoogle Scholar
  14. J. Geelen, B. Gerards, and G. Whittle. Towards a matroid-minor structure theory. In Combinatorics, complexity, and chance, volume 34 of Oxford Lecture Ser. Math. Appl., pages 72--82. Oxford Univ. Press, Oxford, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Gromov. Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry. Geom. Funct. Anal., 20(2):416--526, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Gundert. On the complexity of embeddable simplicial complexes. Diplomarbeit, Freie Universität Berlin, 2009.Google ScholarGoogle Scholar
  17. H. Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich, 88:133--142, 1943.Google ScholarGoogle Scholar
  18. A. Haefliger. Plongements de variétés dans le domaine stable. Sém. Bourbaki, 245, 1982.Google ScholarGoogle Scholar
  19. T. Kaiser. Minors of simplicial complexes. Discrete Appl. Math., 157(12):2597--2602, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. G. Kalai. The diameter of graphs of convex polytopes and f-vector theory. In Applied geometry and discrete mathematics, volume 4 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 387--411. Amer. Math. Soc., Providence, RI, 1991.Google ScholarGoogle Scholar
  21. J. Komlós and E. Szemerédi. Topological cliques in graphs. II. Combin. Probab. Comput., 5(1):79--90, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  22. D. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and Computation in Mathematics. Springer, Berlin, 2008.Google ScholarGoogle Scholar
  23. D. Kozlov. The threshold function for vanishing of the top homology group of random d-complexes. Proc. Amer. Math. Soc., 138(12):4517--4527, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Krivelevich and B. Sudakov. Minors in expanding graphs. Geom. Funct. Anal., 19(1):294--331, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  25. K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta, 15:271--283, 1930.Google ScholarGoogle ScholarCross RefCross Ref
  26. F. T. Leighton. Complexity Issues in VLSI. MIT Press, Cambridge, MA, 1983.Google ScholarGoogle Scholar
  27. N. Linial and R. Meshulam. Homological connectivity of random 2-complexes. Combinatorica, 26(4):475--487, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. L. Lovász. Graph minor theory. Bull. Amer. Math. Soc. (N.S.), 43(1):75--86 (electronic), 2006.Google ScholarGoogle Scholar
  29. T. Łuczak, B. Pittel, and J. C. Wierman. The structure of a random graph at the point of the phase transition. Trans. Amer. Math. Soc., 341(2):721--748, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  30. W. Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math. Ann., 174:265--268, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  31. W. Mader. 3n-5 edges do force a subdivision of $K_5$. Combinatorica, 18(4):569--595, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. Matousek. Using the Borsuk-Ulam theorem. Springer-Verlag, Berlin, 2003.Google ScholarGoogle Scholar
  33. J. Matousek, M. Tancer, and U. Wagner. Hardness of embedding simplicial complexes in Rd. J. Eur. Math. Soc., 13(2):259--295, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  34. P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17:179--184, 1970.Google ScholarGoogle ScholarCross RefCross Ref
  35. S. A. Melikhov. The van Kampen obstruction and its relatives. Proc. Steklov Inst. Math., 266(1):142--176, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  36. R. Meshulam and N. Wallach. Homological connectivity of random k-dimensional complexes. Random Structures Algorithms, 34(3):408--417, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. J. R. Munkres. Elements of Algebraic Topology. Addison-Wesley, Menlo Park, CA, 1984.Google ScholarGoogle Scholar
  38. E. Nevo. Higher minors and van Kampen's obstruction. Math. Scand., 101:161--176, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  39. I. Newman and Y. Rabinovich. Finite volume spaces and sparsification. arXiv:1002.3541v3, 2010.Google ScholarGoogle Scholar
  40. N. Robertson, P. Seymour, and R. Thomas. Hadwiger's conjecture for K6-free graphs. Combinatorica, 13(3):279--361, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  41. N. Robertson and P. D. Seymour. Graph minors. XX. Wagner's conjecture. J. Combin. Theory Ser. B, 92(2):325--357, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. K. S. Sarkaria. Shifting and embeddability of simplicial complexes. Technical report, Max-Planck-Institut für Mathematik, Bonn, MPI/92--51, 1992.Google ScholarGoogle Scholar
  43. A. B. Skopenkov. Embedding and knotting of manifolds in Euclidean spaces. In Surveys in contemporary mathematics, volume 347 of London Math. Soc. Lecture Note Ser., pages 248--342. Cambridge Univ. Press, Cambridge, 2008.Google ScholarGoogle Scholar
  44. R. P. Stanley. The upper bound conjecture and Cohen-Macaulay rings. Studies in Appl. Math., 54(2):135--142, 1975.Google ScholarGoogle ScholarCross RefCross Ref
  45. A. Thomason. The extremal function for complete minors. J. Combin. Theory Ser. B, 81(2):318--338, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. B. R. Ummel. Imbedding classes and n-minimal complexes. Proc. Amer. Math. Soc., 38:201--206, 1973.Google ScholarGoogle Scholar
  47. E. R. van Kampen. Komplexe in euklidischen Räumen. Abh. Math. Sem. Univ. Hamburg, 9:72--78, 1932.Google ScholarGoogle ScholarCross RefCross Ref
  48. K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Math. Ann., 114(1):570--590, 1937.Google ScholarGoogle ScholarCross RefCross Ref
  49. C. Weber. Plongements de polyedres dans le domaine metastable. Comment. Math. Helv., 42:1--27, 1967.Google ScholarGoogle ScholarCross RefCross Ref
  50. J. Zaks. On minimal complexes. Pacif. J. Math., 28:721--727, 1969.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Minors in random and expanding hypergraphs

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SoCG '11: Proceedings of the twenty-seventh annual symposium on Computational geometry
      June 2011
      532 pages
      ISBN:9781450306829
      DOI:10.1145/1998196

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 June 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate625of1,685submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader