skip to main content
10.1145/2001576.2001604acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Coupled inverted pendulums: a benchmark for evolving decentral controllers in modular robotics

Published: 12 July 2011 Publication History

Abstract

The challenging scientific field of self-reconfiguring modular robotics (i.e., decentrally controlled 'super-robots' based on autonomous, interacting robot modules with variable morphologies) calls for novel paradigms of designing robot controllers. One option is the approach of evolutionary robotics. In this approach, the challenge is to achieve high evaluation numbers with the available resources which may even affect the feasibility of this approach. Simulations are usually applied at least in a preliminary stage of research to support controller design. However, even simulations are computationally expensive which gets even more burdensome once comprehensive studies and comparisons between different controller designs and approaches have to be done. Hence, a benchmark with low computational cost is needed that still contains the typical challenges of decentral control, is comparable, and easily manageable. We propose such a benchmark and report an empirical study of its characteristics including the transition from the single-robot setting to the multi-robot setting, typical local optima, and properties of adaptive walks through the fitness landscape.

References

[1]
D. Chatterjee, A. Patra, and H. K. Joglekar. Swing-up and stabilization of a cart-pendulum system under restricted cart track length. Systems & Control Letters, 47(4):355--364, 2002.
[2]
T. Chouard. Revenge of the hopeful monster. Nature, 463:864--867, February 2010.
[3]
A. P. del Pôbil, R. Madhavan, and E. Messina, editors. IROS 2007 Workshop: Benchmarks in Robotics Research, 2007.
[4]
D. Floreano, P. Husbands, and S. Nolfi. Evolutionary robotics. In B. Siciliano and K. Oussama, editors, Handbook of Robotics, pages 1423--1452. Springer-Verlag, Berlin, 2008.
[5]
D. Floreano and F. Mondada. Genetic evolution of a neural-network driven robot. In D. Cliff, P. Husbands, J.-A. Meyer, and S. Wilson, editors, From Animals to Animats 3, pages 421--430, 1994. MIT Press.
[6]
H. Flyvbjerg and B. Lautrup. Evolution in a rugged fitness landscape. Physical Review A, 46(10):6714--6723, 1992.
[7]
E. Haasdijk, A. A. Rusu, and A. Eiben. Hyperneat for locomotion control in modular robots. In G. Tempesti, A. M. Tyrrell, and J. F. Miller, editors, 9th International Conference on Evolvable Systems (ICES 2010), pages 169--180. Springer-Verlag, 2010.
[8]
H. Hamann, T. Schmickl, and K. Crailsheim. A hormone-based controller for evaluation-minimal evolution in decentrally controlled systems. Artificial Life, 2011. submitted.
[9]
H. Hamann, J. Stradner, T. Schmickl, and K. Crailsheim. Artificial hormone reaction networks: Towards higher evolvability in evolutionary multi-modular robotics. In H. Fellermann, et al., editors, Proc. of the ALife XII Conference, pages 773--780. MIT Press, 2010.
[10]
G. Hornby, S. Takamura, T. Yamamoto, and M. Fujita. Autonomous evolution of dynamic gaits with two quadruped robots. IEEE Transactions on Robotics, 21(3):402--410, 2005.
[11]
H. Kitano, M. Asada, I. Noda, and H. Matsubara. Robocup: Robot world cup. Robotics & Automation Magazine, IEEE, 5(3):30--36, 2002.
[12]
J. R. Koza and M. A. Keane. Genetic breeding of non-linear optimal control strategies for broom balancing. In A. Bensoussan and J. Lions, editors, Analysis and Optimization of Systems, volume 144 of LNCS, pages 47--56. Springer-Verlag, 1990.
[13]
A. Martinoli, K. Easton, and W. Agassounon. Modeling swarm robotic systems: A case study in collaborative distributed manipulation. Int. Journal of Robotics Research, 23(4):415--436, 2004.
[14]
S. Murata, K. Kakomura, and H. Kurokawa. Toward a scalable modular robotic system - navigation, docking, and integration of m-tran. IEEE Robotics & Automation Magazine, 14(4):56--63, 2008.
[15]
A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness functions in evolutionary robotics: A survey and analysis. Robotics and Auton. Syst., 57:345--370, 2009.
[16]
S. Nolfi and D. Floreano. Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, 2004.
[17]
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C+. Cambridge Univ. Press, 2002.
[18]
I. Rechenberg. Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann Holzboog, 1973.
[19]
I. Rechenberg. Evolutionsstrategie '94. Frommann Holzboog, 1994.
[20]
REPLICATOR. Project website, 2011. http://www.replicators.eu.
[21]
G. Seetharaman, A. Lakhotia, and E. Blasch. Unmanned vehicles come of age: The DARPA grand challenge. Computer, 39(12):26--29, 2006.
[22]
W.-M. Shen, M. Krivokon, H. Chiu, J. Everist, M. Rubenstein, and J. Venkatesh. Multimode locomotion via SuperBot reconfigurable robots. Autonomous Robots, 20(2):165--177, 2006.
[23]
K. O. Stanley and R. Miikkulainen. Competitive coevolution through evolutionary complexification. J. of Artificial Intelligence Research, 21(1):63--100, 2004.
[24]
SYMBRION. Project website, 2011. http://www.symbrion.eu.
[25]
V. Trianni. Evolutionary Swarm Robotics, volume 108 of Studies in Computational Intelligence. Springer-Verlag, Berlin, Germany, 2008.
[26]
P. Vadakkepat, X. Peng, B. Quek, and T. Lee. Evolution of fuzzy behaviors for multi-robotic system. Robotics and Auton. Systems, 55(2):146--161, 2007.
[27]
R. Watson, S. Ficici, and J. Pollack. Embodied evolution: Distributing an evolutionary algorithm in a population of robots. Robotics and Autonomous Systems, 39(1):1--18, 2002.
[28]
S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone. Evolving keepaway soccer players through task decomposition. In GECCO 2003, pages 201--212. Springer-Verlag, 2003.
[29]
S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement learning. Journal of Machine Learning Research, 7:877--917, 2006.
[30]
B. Widrow and F. W. Smith. Pattern recognizing control systems. In J. T. Tou and R. H. Wilcox, editors, Computer and Information Sciences, pages 288--317. Clever Hume Press, Washington, DC, 1964.
[31]
L. Winkler and H. Wörn. Symbricator3D - A distributed simulation environment for modular robots. In M. Xie, et al., editors, ICIRA, volume 5928 of LNCS, pages 1266--1277. Springer-Verlag, 2009.
[32]
X. Xin and M. Kaneda. Analysis of the energy based control for swinging up two pendulums. IEEE Trans. on Automatic Control, 50(5):679--684, 2005.
[33]
P. Zahadat, D. Christensen, U. P. Schultz, S. Katebi, and K. Støy. Fractal gene regulatory networks for robust locomotion control of modular robots. In S. Doncieux, et al., editors, From Animals to Animats 11, LNAI 6226, pages 544--554. Springer, 2010.

Cited By

View all
  • (2024)Local Optima Networks for Reinforcement Learning - A Case Study: Coupled Inverted Pendulum Task2024 IEEE Conference on Artificial Intelligence (CAI)10.1109/CAI59869.2024.00118(865-870)Online publication date: 25-Jun-2024
  • (2023)A Fitness Landscape Analysis Approach for Reinforcement Learning in the Control of the Coupled Inverted Pendulum TaskApplications of Evolutionary Computation10.1007/978-3-031-30229-9_5(69-85)Online publication date: 9-Apr-2023
  • (2021)Implementation of Reduced Precision Integer Epigenetic Networks in Hardware2021 IEEE Symposium Series on Computational Intelligence (SSCI)10.1109/SSCI50451.2021.9659878(01-09)Online publication date: 5-Dec-2021
  • Show More Cited By

Index Terms

  1. Coupled inverted pendulums: a benchmark for evolving decentral controllers in modular robotics

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GECCO '11: Proceedings of the 13th annual conference on Genetic and evolutionary computation
    July 2011
    2140 pages
    ISBN:9781450305570
    DOI:10.1145/2001576
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 July 2011

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tag

    1. evolutionary modular robotics

    Qualifiers

    • Research-article

    Conference

    GECCO '11
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)13
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 28 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Local Optima Networks for Reinforcement Learning - A Case Study: Coupled Inverted Pendulum Task2024 IEEE Conference on Artificial Intelligence (CAI)10.1109/CAI59869.2024.00118(865-870)Online publication date: 25-Jun-2024
    • (2023)A Fitness Landscape Analysis Approach for Reinforcement Learning in the Control of the Coupled Inverted Pendulum TaskApplications of Evolutionary Computation10.1007/978-3-031-30229-9_5(69-85)Online publication date: 9-Apr-2023
    • (2021)Implementation of Reduced Precision Integer Epigenetic Networks in Hardware2021 IEEE Symposium Series on Computational Intelligence (SSCI)10.1109/SSCI50451.2021.9659878(01-09)Online publication date: 5-Dec-2021
    • (2021)Stochasticity Improves Evolvability in Artificial Gene Regulatory NetworksAdvances in Computational Intelligence Systems10.1007/978-3-030-87094-2_8(83-94)Online publication date: 18-Nov-2021
    • (2018)Evolutionary Constraint in Artificial Gene Regulatory NetworksAdvances in Computational Intelligence Systems10.1007/978-3-319-97982-3_3(29-40)Online publication date: 11-Aug-2018
    • (2017)Artificial Epigenetic Networks: Automatic Decomposition of Dynamical Control Tasks Using Topological Self-ModificationIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2015.249714228:1(218-230)Online publication date: Jan-2017
    • (2016)Open issues in evolutionary roboticsEvolutionary Computation10.1162/EVCO_a_0017224:2(205-236)Online publication date: 1-Jun-2016
    • (2015)R-HybrIDProceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems10.5555/2772879.2773248(735-744)Online publication date: 4-May-2015
    • (2015)Evolving Efficient Solutions to Complex Problems Using the Artificial Epigenetic NetworkInformation Processing in Cells and Tissues10.1007/978-3-319-23108-2_13(153-165)Online publication date: 2-Sep-2015
    • (2013)The artificial epigenetic network2013 IEEE International Conference on Evolvable Systems (ICES)10.1109/ICES.2013.6613284(66-72)Online publication date: Apr-2013
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media