skip to main content
10.1145/2001576.2001762acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Semantically embedded genetic programming: automated design of abstract program representations

Published: 12 July 2011 Publication History

Abstract

We propose an alternative program representation that relies on automatic semantic-based embedding of programs into discrete multidimensional spaces. An embedding imposes a well-structured hypercube topology on the search space, endows it with a semantic-aware neighborhood, and enables convenient search using Cartesian coordinates. The embedding algorithm consists in locality-driven optimization and operates in abstraction from a specific fitness function, improving locality of all possible fitness landscapes simultaneously. We experimentally validate the approach on a large sample of symbolic regression tasks and show that it provides better search performance than the original program space. We demonstrate also that semantic embedding of small programs can be exploited in a compositional manner to effectively search the space of compound programs.

References

[1]
E. Galvan-Lopez, M. O'Neill, and A. Brabazon. Towards understanding the effects of locality in GP. In Eighth Mexican International Conference on Artificial Intelligence, MICAI 2009, pages 9--14, Nov. 2009.
[2]
C. Johnson. Genetic programming crossover: Does it cross over? In L. Vanneschi, S. Gustafson, A. Moraglio, I. De Falco, and M. Ebner, editors, Proceedings of the 12th European Conference on Genetic Programming, EuroGP 2009, volume 5481 of LNCS, pages 97--108, Tuebingen, Apr. 15--17 2009. Springer.
[3]
K. Krawiec. Learnable embeddings of program spaces. In S. Silva, J. A. Foster, M. Nicolau, M. Giacobini, and P. Machado, editors, Proceedings of the 14th European Conference on Genetic Programming, EuroGP 2011, volume 6621 of LNCS, pages 167--178, Turin, Italy, 27--29 Apr. 2011. Springer Verlag.
[4]
K. Krawiec and P. Lichocki. Approximating geometric crossover in semantic space. In G. Raidl, F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B. Congdon, M. Middendorf, C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne, H.-G. Beyer, K. Stanley, J. F. Miller, J. van Hemert, T. Lenaerts, M. Ebner, J. Bacardit, M. O'Neill, M. Di Penta, B. Doerr, T. Jansen, R. Poli, and E. Alba, editors, GECCO '09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pages 987--994, Montreal, 8--12 July 2009. ACM.
[5]
K. Krawiec and B. Wieloch. Functional modularity for genetic programming. In G. Raidl, F. Rothlauf, G. Squillero, R. Drechsler, T. Stuetzle, M. Birattari, C. B. Congdon, M. Middendorf, C. Blum, C. Cotta, P. Bosman, J. Grahl, J. Knowles, D. Corne, H.-G. Beyer, K. Stanley, J. F. Miller, J. van Hemert, T. Lenaerts, M. Ebner, J. Bacardit, M. O'Neill, M. Di Penta, B. Doerr, T. Jansen, R. Poli, and E. Alba, editors, GECCO '09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pages 995--1002, Montreal, 8--12 July 2009. ACM.
[6]
W. B. Langdon. Convergence rates for the distribution of program outputs. In W. B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pages 812--819, New York, 9--13 July 2002. Morgan Kaufmann Publishers.
[7]
B. McKay, M. J. Willis, and G. W. Barton. Using a tree structured genetic algorithm to perform symbolic regression. In A. M. S. Zalzala, editor, First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA, volume 414, pages 487--492, Sheffield, UK, 12--14 Sept. 1995. IEEE.
[8]
N. F. McPhee, B. Ohs, and T. Hutchison. Semantic building blocks in genetic programming. In M. O'Neill, L. Vanneschi, S. Gustafson, A. I. Esparcia Alcazar, I. De Falco, A. Della Cioppa, and E. Tarantino, editors, Proceedings of the 11th European Conference on Genetic Programming, EuroGP 2008, volume 4971 of Lecture Notes in Computer Science, pages 134--145, Naples, 26--28 Mar. 2008. Springer.
[9]
A. Moraglio and R. Poli. Topological interpretation of crossover. In K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen, D. Dasgupta, D. Floreano, J. Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector, A. Tettamanzi, D. Thierens, and A. Tyrrell, editors, Genetic and Evolutionary Computation -- GECCO-2004, Part I, volume 3102 of Lecture Notes in Computer Science, pages 1377--1388, Seattle, WA, USA, 26--30 June 2004. Springer-Verlag.
[10]
R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic programming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).
[11]
U. N. Quang, X. H. Nguyen, and M. O'Neill. Semantic aware crossover for genetic programming: the case for real-valued function regression. In L. Vanneschi, S. Gustafson, A. Moraglio, I. De Falco, and M. Ebner, editors, Proceedings of the 12th European Conference on Genetic Programming, EuroGP 2009, volume 5481 of LNCS, pages 292--302, Tuebingen, Apr. 15--17 2009. Springer.
[12]
F. Rothlauf. Representations for Genetic and Evolutionary Algorithms. Physica-Verlag, Heidelberg New York, 2002.
[13]
M. Schoenauer, M. Sebag, F. Jouve, B. Lamy, and H. Maitournam. Evolutionary identification of macro-mechanical models. In P. J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 23, pages 467--488. MIT Press, Cambridge, MA, USA, 1996.
[14]
L. Vanneschi and M. Tomassini. Pros and cons of fitness distance correlation in genetic programming. In A. M. Barry, editor, GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, pages 284--287, Chigaco, 11 July 2003. AAAI.

Cited By

View all
  • (2012)Medial crossovers for genetic programmingProceedings of the 15th European conference on Genetic Programming10.1007/978-3-642-29139-5_6(61-72)Online publication date: 11-Apr-2012
  • (2012)An ecological approach to measuring locality in linear genotype to phenotype mapsProceedings of the 15th European conference on Genetic Programming10.1007/978-3-642-29139-5_15(170-181)Online publication date: 11-Apr-2012

Index Terms

  1. Semantically embedded genetic programming: automated design of abstract program representations

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GECCO '11: Proceedings of the 13th annual conference on Genetic and evolutionary computation
    July 2011
    2140 pages
    ISBN:9781450305570
    DOI:10.1145/2001576
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 July 2011

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. genetic programming
    2. genotype-phenotype mapping
    3. locality
    4. program representation
    5. program semantics

    Qualifiers

    • Research-article

    Conference

    GECCO '11
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 19 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2012)Medial crossovers for genetic programmingProceedings of the 15th European conference on Genetic Programming10.1007/978-3-642-29139-5_6(61-72)Online publication date: 11-Apr-2012
    • (2012)An ecological approach to measuring locality in linear genotype to phenotype mapsProceedings of the 15th European conference on Genetic Programming10.1007/978-3-642-29139-5_15(170-181)Online publication date: 11-Apr-2012

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media