skip to main content
10.1145/2001858.2002121acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Learning classifier systems

Published: 12 July 2011 Publication History

Abstract

In the 1970s, John H. Holland designed Learning Classifier Systems (LCSs) as highly adaptive, cognitive systems. Since the introduction of the accuracy-based XCS classifier system by Stewart W. Wilson in 1995 and the modular analysis of several LCSs thereafter, LCSs have become a state-of-the-art machine learning system. Various publications have shown that LCSs can effectively solve data-mining problems, reinforcement learning problems, other predictive problems, and even cognitive, robotics control problems. In comparison to other, non-evolutionary machine learning techniques, it was shown that performance is competitive or even superior, dependent on the setup and problem. Advantages are that LCSs are learning online, are very plastic and flexible, are applicable to a larger range of problems, and are highly adaptive. Moreover, system knowledge can be easily extracted, visualized, or even used to focus the progressive search on particular interesting subspaces. The Learning Classifier System tutorial provides a gentle introduction to LCSs and their general functionality. It then surveys the current theoretical understanding of the systems. Finally, we provide a suite of current successful LCS applications and discuss the most promising areas for future applications and research directions.

References

[1]
Bacardit, J. (2004). Pittsburgh Genetic-Based Machine Learning in the Dame Mining Era: Representations, Generalization, and Run Time. Computer Engineering Department, University of Ramon Llull, Barcelona, Spain.
[2]
Barry, A. (2007). The Learning Classifier Systems Web. University of Bath. http://lcsweb.cs.bath.ac.uk/.
[3]
Baum, E. B. (1999). Toward a model of intelligence as an economy of agents. Machine Learning, 35, 155--185.
[4]
Bernadó-Mansilla, E., & Garrell-Guiu, J.M. (2003). Accuracy-based learning classifier systems: Models, analysis, and applications to classification tasks. Evolutionary Computation,11, 209--238.
[5]
Bernadó, E.; Llorà, X., & Garrell, J.M. (2002). XCS and GALE: A comparative study of two learning classifier systems and six other learning algorithms on classification tasks. In Lanzi, P.L.; Stolzmann, W. & Wilson, S.W. (Eds.), Advances in Learning Classifier Systems (LNAI 2321) (pp. 115--132). Berlin Heidelberg: Springer-Verlag.
[6]
Bonarini, A. (2000). An introduction to learning fuzzy classifier systems. In Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.), Learning classifier systems: From foundations to applications (LNAI 1813) (pp. 83--104). Berlin Heidelberg: Springer-Verlag.
[7]
Booker, L. B. (1982). Intelligent Behavior as an Adaptation to the Task Environment. PhD thesis. The University of Michigan, Ann Arbor, MI.
[8]
Booker, L. B. (1985). Improving the performance of genetic algorithms in classifier systems. In Grefenstette, J. (Ed.), Proceedings of the 1st international conference on genetic algorithms and their application (ICGA-1985) (pp. 80--92). Pittsburg, PA: Lawrence Erlbaum Associates.
[9]
Booker, L. B. (2000). Do we really need to estimate rule utility in classifier systems? In Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.), Learning classifier systems: From foundations to applications (LNAI 1813) (pp. 125--142). Berlin Heidelberg: Springer-Verlag.
[10]
Booker, L. B. (2001). Classifier systems, endogenous fitness, and delayed rewards: A preliminary investigation. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), 921--926.
[11]
Booker, L. B., Goldberg, D. E., & Holland, J. H. (1989). Classifier systems and genetic algorithms. Artificial Intelligence, 40, 235--282.
[12]
Bull, L. (Ed.). Applications of learning classifier systems. Berlin Heidelberg: Springer-Verlag.
[13]
Bull, L, & Hurst, J. (2002): ZCS redux. Evolutionary Computation, 10, 185--205.
[14]
Bull, L. & Kovacs, T. (Eds.) (2005). Foundations of learning classifier systems. Berlin Heidelberg: Springer-Verlag.
[15]
Bull, L., & O'Hara, T. (2002). Accuracy-based neuro and neuro-fuzzy classifier systems. Proceedings of the Fourth Genetic and Evolutionary Computation Conference (GECCO-2002), 905--911.
[16]
Butz, M. V. (2002). Anticipatory learning classifier systems. Kluwer Academic Publishers, Boston, MA.
[17]
Butz, M. V. (2006). Rule-based evolutionary online learning systems: A principled approach to LCS analysis and design. Studies in Fuzziness and Soft Computing Series, Springer Verlag, Berlin Heidelberg, Germany.
[18]
Butz, M. V., Goldberg, D. E. & Lanzi, P. L. (2005). Computational complexity of the XCS classifier system. In Bull, L. & Kovacs, T. (Eds.), Foundations of learning classifier systems (pp. 91--126). Berlin Heidelberg: Springer-Verlag.
[19]
Butz, M. V., Goldberg, D. E., & Lanzi, P. L. (2005). Gradient descent methods in learning classifier systems: Improving XCS performance in multistep problems. IEEE Transactions on Evolutionary Computation, 9, 452--473.
[20]
Butz, M. V., Goldberg, D. E., & Stolzmann, W. (2002). The anticipatory classifier system and genetic generalization. Natural Computing, 1, 427--467.
[21]
Butz, M. V., Goldberg, D. E., & Tharakunnel, K. (2003). Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy. Evolutionary Computation, 11, 239--277.
[22]
Butz, M.V., & Herbort, O. (2008). Context-dependent predictions and cognitive arm control with XCSF. GECCO 2008: Genetic and Evolutionary Computation Conference, 1357--1364 (best paper award).
[23]
Butz, M. V., & Hoffmann, J. (2002). Anticipations control behavior: Animal behavior in an anticipatory learning classifier system. Adaptive Behavior, 10, 75--96.
[24]
Butz, M. V., Kovacs, T., Lanzi, P. L., & Wilson, S. W. (2004). Toward a theory of generalization and learning in XCS. IEEE Transactions on Evolutionary Computation, 8, 28--46.
[25]
Butz, M.V., Lanzi, P.L., & Wilson, S.W. (2008). Function approximation with XCS: Hyperellipsoidal conditions, recursive least squares, and compaction. IEEE Transactions on Evolutionary Computation, 12, 355--376.
[26]
Butz, M.V., Pedersen, G.K.M., & Stalph, P.O. (2009). Learning sensorimotor control structures with XCSF: Redundancy exploitation and dynamic control. Genetic and Evolutionary Computation Conference, GECCO 2009, 1171--1178 (best paper award).
[27]
Butz, M.V., & Stolzmann, W. (2002). An algorithmic description of ACS2. In Lanzi, P.L., Stolzmann, W., & Wilson, S.W. (Eds.). Advances in learning classifier systems: Fourth international workshop, IWLCS 2001 (LNAI 2321) (pp. 211--230). Berlin Heidelberg: Springer-Verlag.Butz, M. V., & Wilson, S. W. (2002). An Algorithmic Description of XCS. Soft Computing, 6, 144--153.
[28]
Dixon, P. W., Corne, D. W., & Oates, M. J. (2003). A ruleset reduction algorithm for the XCS learning classifier system. In Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.), Learning classifier system: Fifth international workshop, IWLCS 2002 (LNAI 2661) (pp. 20--29). Berlin Heidelberg: Springer-Verlag.
[29]
Drugowitsch, J., (2008) Design and analysis of learning classifier systems: A probabilistic approach, Berlin-Heidelberg: Springer-Verlag.
[30]
Drugowitsch, J. & Barry, A. (2008). A formal framework and extensions for function approximation in learning classifier systems. Machine Learning, 70, 45--88.
[31]
Gérard, P., Meyer, J., & Sigaud, O. (2005). Combining latent learning and dynamic programming in MACS. European Journal of Operational Research, 160, 614--637.
[32]
Gérard, P., & Sigaud, O. (2001). Adding a generalization mechanism to YACS. Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), 951--957.
[33]
Goldberg, D. E. (1983). Computer-Aided Gas Pipeline Operation using Genetic Algorithms and Rule Learning. PhD thesis. The University of Michigan, Ann Arbor, MI.
[34]
Goldberg, D. E. (1989). Genetic algorithms in search, optimization & machine learning. Addison-Wesley.
[35]
Holland, J.H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.
[36]
Holland, J.H. (1985). Properties of the bucket brigade algorithm. In Grefenstette, J. (Ed.), Proceedings of the 1st international conference on genetic algorithms and their application (ICGA-1985) (pp. 1--7). Pittsburg, PA: Lawrence Erlbaum Associates.
[37]
Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction. Processes of inference, learning, and discovery. MIT Press.
[38]
Holland, J. H., & Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms. In Waterman, D. A., & Hayes-Roth, F. (Eds.), Pattern directed inference systems (pp. 313--329). Academic Press.
[39]
Howard, D., Bull, L. & Lanzi, P-L. (2010) A spiking neural representation for XCSF. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press.
[40]
Kovacs, T. (1996). Evolving Optimal Populations with XCS Classifier Systems. Master thesis. University of Birmingham, Birmingham, UK.
[41]
Kovacs, T. (2007). A Learning Classifier System Bibliography. Department of Computer Science, University of Bristol, UK. http://www.cs.bris.ac.uk/~kovacs/lcs/search.html.
[42]
Kovacs, T. (2004). Strength of accuracy: Credit assignment in learning classifier systems. Berlin Heidelberg: Springer-Verlag.
[43]
Kovacs, T., Llorà, X., & Takadama, K. (in press). Advances at the frontier of LCS (LNCS 4399). Berlin Heidelberg: Springer-Verlag.
[44]
Lanzi, P. L. (1999). Extending the representation of classifier conditions. Part II: From messy coding to S-expressions. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), 345--352.
[45]
Lanzi, P. L. (2000). Adaptive agents with reinforcement learning and internal memory. From Animals to Animats 6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior, 333--342.
[46]
Lanzi, P. L., Loiacono, D., Wilson, S. W., & Goldberg, D.E. (2006). Classifier prediction based on tile coding. GECCO 2006: Genetic and Evolutionary Computation Conference, 1497--1504.
[47]
Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.) (2000). Learning classifier systems: From foundations to applications (LNAI 1813). Berlin Heidelberg: Springer-Verlag.
[48]
Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.) (2001). Advances in learning classifier systems: Third international workshop, IWLCS 2000 (LNAI 1996). Berlin Heidelberg: Springer-Verlag.
[49]
Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.) (2002). Advances in learning classifier systems: 4th international workshop, IWLCS 2001 (LNAI 2321). Berlin Heidelberg: Springer-Verlag.
[50]
Lanzi, P. L., Stolzmann, W., & Wilson, S. W. (Eds.) (2003). Learning classifier systems: 5th international workshop, IWLCS 2002 (LNAI 2661). Berlin Heidelberg: Springer-Verlag.
[51]
Lanzi, P. L., & Wilson, S.W. (2000). Toward optimal classifier system performance in non-Markov environments. Evolutionary Computation, 8, 393--41.
[52]
Llorà, X., & Garrell, J. M. (2001). Knowledge independent data mining with fine-grained parallel evolutionary algorithms. Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), 461--468.
[53]
Llorà, X., Goldberg, D. E., Traus, I., & Bernadó, E. (2003). Accuracy, Parsimony, and Generality in Evolutionary Learning Systems via Multiobjective Selection. In Lanzi, P.L., Stolzmann, W. & Wilson, S.W. (Eds.). Learning classifier systems: 5th international workshop, IWLCS 2002 (LNAI 2661) (pp. 118--142). Berlin Heidelberg: Springer-Verlag.
[54]
Orriols-Puig, A., & Bernadó-Mansilla, E. (2009). Evolutionary rule-based systems for imbalanced data sets. Soft Computing, 13, 213--225.
[55]
Orriols-Puig, A., Bernadó-Mansilla, E., Goldberg, D. E., Sastry, K., & Lanzi, P. L. (2009). Facetwise analysis of XCS for problems with class imbalances. IEEE Transactions on Evolutionary Computation, 13, 1093--1119.
[56]
Riolo, R. L. (1991). Lookahead planning and latent learning in a classifier system. In Meyer, J. & Wilson, S.W. (Eds.). From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior (pp. 316--326). MIT Press.
[57]
Sigaud, O., & Wilson, S. W. (2007). Learning classifier systems: A survey. Journal of Soft Computing, 11, 1065--1078.
[58]
Sigaud, O., Butz, M. V., Kozlova, O., & Meyer, C. (2009). Anticipatory learning classifier systems and factored reinforcement learning. In Pezzulo, G., Butz, M.V., Sigaud O., & Baldassarre, G. (Eds.) Anticipatory Behavior in Adaptive Learning Systems: From Psychological Theories to Artificial Cognitive Systems, LNAI 5499, Springer-Verlag, Berlin Heidelberg, 321--333.
[59]
Smith, S. F. (1980). A learning System Based on Genetic Adaptive Algorithms. PhD thesis, University of Pittsburgh, Pittsburgh, PA.
[60]
Stalph, P.O., Butz, M.V., & Pedersen, G.K.M. (2009). Controlling a four degree of freedom arm in 3D using XCSF. 32nd Annual Conference on Artificial Intelligence, KI 2009, 193--200.
[61]
Stalph, P. O., Llorà, X., Goldberg, D. E., & Butz, M. V. (2010). Resource management and scalability of the XCSF learning classifier system. Theoretical Computer Science.
[62]
Stolzmann, W. (1998). Anticipatory classifier systems, Genetic Programming 1998: Proceedings of the Third Annual Conference, 658--664.
[63]
Sutton, R.S. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. Proceedings of the Seventh International Conference on Machine Learning, 216--224.
[64]
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. MIT Press.
[65]
Valenzuela-Rendón, M. (1991). The fuzzy classifier system: A classifier system for continuously varying variables. Proceedings of the 4th International Conference on Genetic Algorithms (ICGA 1991), 346.353.
[66]
Widrow, B., & Hoff, M. (1960). Adaptive switching circuits. Western Electronic Show and Convention, part 4 (pp. 96--104). New York: Convention Record.
[67]
Wilson, S. W. (1983). On the retino-cortical mapping. International Journal of Man-Machine Studies, 18, 361--389.
[68]
Wilson, S. W. (1985). Knowledge growth in an artificial animal. In Grefenstette, J. (Ed.), Proceedings of the 1st international conference on genetic algorithms and their application (ICGA-1985) (pp. 16--23). Pittsburg, PA: Lawrence Erlbaum Associates.
[69]
Wilson, S. W. (1987). Classifier systems and the animat problem. Machine Learning, 2, 199--228.
[70]
Wilson, S. W. (1994). ZCS: A zeroth level classifier system. Evolutionary Computation, 2, 1--18.
[71]
Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation, 3, 149--175.
[72]
Wilson, S. W. (2002). Compact rulesets from XCSI. In Lanzi, P.L., Stolzmann, W., & Wilson, S.W. (Eds.). Advances in learning classifier systems: Fourth international workshop, IWLCS 2001 (LNAI 2321) (pp. 196--208). Berlin Heidelberg: Springer-Verlag.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '11: Proceedings of the 13th annual conference companion on Genetic and evolutionary computation
July 2011
1548 pages
ISBN:9781450306904
DOI:10.1145/2001858

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 July 2011

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. adaptive systems
  2. cognitive systems
  3. connectionism and neural nets
  4. datamining
  5. function approximation
  6. genetic algorithms
  7. learning classifier systems
  8. machine learning
  9. pattern matching
  10. regression
  11. reinforcement learning

Qualifiers

  • Tutorial

Conference

GECCO '11
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 327
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media