skip to main content
column

Rounding coefficients and artificially underflowing terms in non-numeric expressions

Published: 25 July 2011 Publication History

Abstract

This article takes an analytical viewpoint to address the following questions:
1. How can we justifiably beautify an input or result sum of non-numeric terms that has some approximate coefficients by deleting some terms and/or rounding some coefficients to simpler floating-point or rational numbers?
2. When we add two expressions, how can we justifiably delete more non-zero result terms and/or round some result coefficients to even simpler floating-point, rational or irrational numbers?
The methods considered in this paper provide a justifiable scale-invariant way to attack these problems for subexpressions that are multivariate sums of monomials with real exponents.

References

[1]
John Abbott, Claudia Fassino, and Maria-Laura Torrente. Stable border bases for ideals of points. Journal of Symbolic Computation, 43(12):883--894, 2008.
[2]
Götz Alefeld and Jürgen Herzberger. Introduction to interval computations. Academic Press, 1983.
[3]
Peter Borwein, Kevin Hare, and Alan Meichsner. Reverse symbolic computations, the identify function. In Maple Summer Workshop, 2002. http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P175.pdf.
[4]
Robert M. Corless, Mark W. Giesbrecht, Ilias S. Kotsireas, and Stephen M. Watt. Numerical implicitization of parametric hypersurfaces with linear algebra. In Proceedings AISC 2000, Madrid, volume 1930 of Lecture Notes in AI, pages 174--183. Springer, 2000. Ontario Research Centre for Computer Algebra Technical Report TR-00-03, http://www.orcca.on.ca/ TechReports.
[5]
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 2nd edition. MIT Press, McGraw-Hill Book Company, 2000.
[6]
Chuangyin Dang. An arbitrary starting homotopy-like simplicial algorithm for computing an integer point in a class of polytopes. SIAM Journal on Discrete Mathematics, 23(2):609--633, 2009.
[7]
Harold Davenport. Simultaneous Diophantine Approximation. Proceedings of the London Mathematical Society, s3-2(1):406--416, 1952.
[8]
Helaman R.P. Ferguson, David H. Bailey, and Steve Arno. Analysis of pslq, an integer relation finding algorithm. Mathematics of Computation, 68(225):351--370, 1999.
[9]
George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler. Computer Methods for Mathematical Computations. Prentice-Hall, 1977.
[10]
Xiao-Shan Gao and Shang-Ching Chou. Implicitization of rational parametric equations. Journal of Symbolic Computation, 14(5):459--470, 1992.
[11]
Irene Gargantini and Peter Henrici. Circular arithmetic and the determination of polynomial zeros. Numerische Mathematik, 18(4):305--320, 1971.
[12]
Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge University Press, Cambridge ; New York, 1999.
[13]
Mark Giesbrecht, George Labahn, and Wen shin Lee. Symbolic-numeric sparse interpolation of multivariate polynomials. Journal of Symbolic Computation, 44(8):943--959, 2009.
[14]
David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing Surveys, 23(1):5--48, 1991.
[15]
Daniel Heldt, Martin Kreuzer, Sebastian Pokutta, and Hennie Poulisse. Approximate computation of zero-dimensional polynomial ideals. Journal of Symbolic Computation, 44(11):1566--1591, 2009.
[16]
Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002.
[17]
Volker Weispfenning (editors) Johannes Grabmeier, Erich Kaltofen. Computer algebra handbook: foundations, applications, systems. Berlin ; New York : Springer, 2003.
[18]
William Kahan. A brief tutorial on gradual underflow. http://www.eecs.berkeley.edu/~wkahan/ARITH_17U.pdf, 2005 (accessed April 2010).
[19]
Pramook Khungurn. Shirayanagi-Sweedler algebraic algorithm stabilization and polynomial gcd algorithms. Master's thesis, MIT, 2007.
[20]
Jeffrey C. Lagarias. The computational complexity of simultaneous Diophantine approximation problems. SIAM Journal on Computing, 14(1):196--209, 1985.
[21]
A.K. Lenstra, H.W. Lenstra, and L. Lovasz. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515--534, 1982.
[22]
Kyoko Makino and Martin Berz. Taylor models and other validated functional inclusion methods. International Journal, 4(4):379--456, 2003.
[23]
The Numerical Algorithms Group. The NAG Fortran Library Manual - Mark 22.
[24]
Victor Y. Pan. Parallel least-squares solution of general and Toeplitz-like linear systems. In Proc. 2nd Annual ACM Symp. on Parallel Algorithms and Architecture, pages 244--253, 1990.
[25]
Helmut Ratschek and Jon Rokne. Computer methods for the range of functions. Halsted Pr, 1984.
[26]
Nargol Rezvani. Approximate polynomials in different bases. Master's thesis, University of Western Ontario, 2005.
[27]
Nargol Rezvani and Robert M. Corless. The nearest polynomial with a given zero, revisited. Communications in Computer Algebra, 39(3):71--77, September 2005.
[28]
Daniel Richardson. How to recognize zero. Journal of Symbolic Computation, 24(6):627--645, 1997.
[29]
Theodore J. Rivlin. Chebyshev polynomials: from approximation theory to number theory. Wiley, 1990.
[30]
Jon Rokne and Peter Lancaster. Complex interval arithmetic. Communications of the ACM, 14(2):112, 1971.
[31]
Siegfried M. Rump. Fast and parallel interval arithmetic. BIT Numerical Mathematics, 39(3):534--554, 1999.
[32]
Kiyoshi Shirayanagi and Hiroshi Sekigawa. A new Gröbner basis conversion method based on stabilization techniques. Theoretical Computer Science, 409(2):311--317, 2008.
[33]
Hans J. Stetter. The nearest polynomial with a given zero, and similar problems. Sigsam Bulletin: Communications on Computer Algebra, 33(4):2--4, 1999.
[34]
Hans J. Stetter. Numerical Polynomial Algebra. SIAM, 2004.
[35]
Lloyd N. Trefethen and Robert S. Schreiber. Average-case stability of Gaussian elimination. SIAM Journal on Matrix Analysis and Applications, 11:335, 1990.
[36]
Michael Trott. The Mathematica guidebook for numerics. Springer, New York, 2006.
[37]
Zhonggang Zeng and Barry H. Dayton. The approximate GCD of inexact polynomials. In Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, pages 320--327. ACM Press, 2004.

Cited By

View all
  • (2014)Fuzzy simplification of non-numeric expressions containing some intervals and/or floating point numbersProceedings of the 39th International Symposium on Symbolic and Algebraic Computation10.1145/2608628.2627489(9-16)Online publication date: 23-Jul-2014
  • (2012)GCD of multivariate approximate polynomials using beautification with the subtractive algorithmProceedings of the 2011 International Workshop on Symbolic-Numeric Computation10.1145/2331684.2331709(153-154)Online publication date: 7-Jun-2012

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Communications in Computer Algebra
ACM Communications in Computer Algebra  Volume 45, Issue 1/2
March/June 2011
138 pages
ISSN:1932-2232
EISSN:1932-2240
DOI:10.1145/2016567
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 July 2011
Published in SIGSAM-CCA Volume 45, Issue 1/2

Check for updates

Qualifiers

  • Column

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2014)Fuzzy simplification of non-numeric expressions containing some intervals and/or floating point numbersProceedings of the 39th International Symposium on Symbolic and Algebraic Computation10.1145/2608628.2627489(9-16)Online publication date: 23-Jul-2014
  • (2012)GCD of multivariate approximate polynomials using beautification with the subtractive algorithmProceedings of the 2011 International Workshop on Symbolic-Numeric Computation10.1145/2331684.2331709(153-154)Online publication date: 7-Jun-2012

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media