skip to main content
10.1145/2018358.2018385acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicailConference Proceedingsconference-collections
research-article

FrameNet model of the suspension of norms

Published: 06 June 2011 Publication History

Abstract

One open problem in the AI & Law community is how to provide computers with a basic understanding of legal concepts, and their relationship with legal texts and with the legal lexicon. We propose to add a layer to connect the linguistic description of the provisions to syntactic patterns using FramNet that can be exploited thought NLP tools. A deep-parsing and shallow-semantics approach has been devised to interpret and retrieve the characterizing components of legal modificatory provisions. In this paper we single out the case of efficacy suspension and show how FrameNet approach can provide profit especially to isolate temporal parameters and their interpretation.

References

[1]
Biagioli C., Francesconi E., Passerini A., Montemagni S., and Soria C., "Automatic Semantics Extraction in Law Documents." In Proceedings of International Conference on Artificial Intelligence and Law, 2005, pp. 133--39, 2005.
[2]
Collin F. B., Fillmore C. J., and Lowe J. B., "The Berkeley FrameNet Project.", Proceedings of the 17th International Conference on Computational Linguistics, August 10--14, 1998, Montreal and Quebec, Canada, 1998.
[3]
De Maat E., van de Ven S., Winkels R., van Engers Tom M., "Automated Handling of Amending Documents and Resulting Consolidations.", JURIX 2009, pp. 116-125, 2009.
[4]
De Maat E., Winkels R., "Automated Classification of Norms.", in Sources of Law. Semantic Processing of Legal Texts 2010, pp. 170--191, 2010.
[5]
Dini L., and Bosca A., "Dependency Based Valence Induction for an Italian FrameNet.", In Proceedings of GL2009, pp. 27--35, 2009.
[6]
Fillmore C. J., "Scenes-and-frames semantics.", In Antonio Zampolli, editor, Linguistic Structures Processing, pp. 55--79. North Holland, Amsterdam, 1977.
[7]
Francesconi E., and Passerini A., "Automatic Classification of Provisions in Legislative Texts. In ICAIL 2007, vol. 15, pp. 1--17, 2007.
[8]
Guastini R., Teoria e dogmatica delle fonti. Milan: Giuffrè, 1998.
[9]
Lesmo L., "The Rule-Based Parser of the NLP Group of the University of Torino.", Intelligenza Artificiale, 2(4), pp. 46--47, June 2007, 2007.
[10]
Lesmo L., Mazzei A., and Radicioni D. P., "Extracting Semantic Annotations from Legal Texts." Hypertext 2009, pp. 167--72, 2009.
[11]
Lesmo L., Mazzei A., and Radicioni D. P., "Semantic Annotation of Legal Modificatory Provisions.", In AI*IA 2009: 10th Congress of the Italian Association for Artificial Intelligence, ed. R. Serra, LNAI, Berlin: Springer-Verlag, 2009.
[12]
Mazzei A., Radicioni D. P., and Brighi R., "NLP-Based Extraction of Modificatory Provisions Semantics." ICAIL 2009, pp. 50--57, New York: ACM Press, 2009.
[13]
Palmirani M., "Time Model in Normative Information Systems." In proceedings of the workshop The Role of Legal Knowledge in eGovernment, ICAIL2005, 2005.
[14]
Palmirani M., and Brighi R., "Model Regularity of Legal Language in Active Modifications.", AICOL Workshop 2009, pp. 54--73 Springer, 2010.
[15]
Palmirani M., Brighi R., and Massini M., "Automated Extraction of Normative References in Legal Texts.", In Proceedings of ICAIL 2003, pp. 105--6, New York: ACM Press, 2003.
[16]
Palmirani. M., and Brighi R., "An XML Editor for Legal Information Management." In proceedings of DEXA 2003, Workshop on E-Government, Prague, September 1--5, pp. 421--29, Berlin and Heidelberg: Springer-Verlag, 2003.
[17]
Soria C., Bartolini R., Lenci A., Montemagni S., and Pirrelli V., "Automatic Extraction of Semantics in Law Documents.", In Proceedings of the 5th Legislative XML Workshop, pp. 253--66, ed. C. Biagioli, E. Francesconi, and G. Sartor. European Press Academic Publishing, 2007.

Cited By

View all
  • (2020)Violence detection explanation via semantic roles embeddingsBMC Medical Informatics and Decision Making10.1186/s12911-020-01237-420:1Online publication date: 15-Oct-2020
  • (2020)Measuring Discretion and Delegation in Legislative Texts: Methods and Application to US StatesPolitical Analysis10.1017/pan.2020.929:1(43-57)Online publication date: 26-May-2020
  • (2020)Populating legal ontologies using semantic role labelingArtificial Intelligence and Law10.1007/s10506-020-09271-3Online publication date: 24-Jun-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICAIL '11: Proceedings of the 13th International Conference on Artificial Intelligence and Law
June 2011
270 pages
ISBN:9781450307550
DOI:10.1145/2018358

Sponsors

  • The International Association for Artificial Intelligence and Law
  • AAAI: Am Assoc for Artifical Intelligence
  • PittLaw: U. of Pittsburgh School of Law

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 June 2011

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. FrameNet
  2. NLP
  3. legal knowledge modelling
  4. semantic interpretation

Qualifiers

  • Research-article

Conference

ICAIL '11
Sponsor:
  • AAAI
  • PittLaw

Acceptance Rates

Overall Acceptance Rate 69 of 169 submissions, 41%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Violence detection explanation via semantic roles embeddingsBMC Medical Informatics and Decision Making10.1186/s12911-020-01237-420:1Online publication date: 15-Oct-2020
  • (2020)Measuring Discretion and Delegation in Legislative Texts: Methods and Application to US StatesPolitical Analysis10.1017/pan.2020.929:1(43-57)Online publication date: 26-May-2020
  • (2020)Populating legal ontologies using semantic role labelingArtificial Intelligence and Law10.1007/s10506-020-09271-3Online publication date: 24-Jun-2020
  • (2018)Legal Patterns for Different Constitutive RulesAI Approaches to the Complexity of Legal Systems10.1007/978-3-030-00178-0_7(105-123)Online publication date: 23-Oct-2018
  • (2017)Ontology-based information extraction for juridical events with case studies in Brazilian legal realmArtificial Intelligence and Law10.1007/s10506-017-9203-z25:4(379-396)Online publication date: 24-Jul-2017
  • (2016)An OWL ontology library representing judicial interpretationsSemantic Web10.3233/SW-1401467:3(229-253)Online publication date: 23-Mar-2016
  • (2013)Automatic Information Extraction from Texts with Inference and Linguistic Knowledge Acquisition RulesProceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 0310.1109/WI-IAT.2013.171(151-154)Online publication date: 17-Nov-2013

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media