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ABSTRACT
In many software attacks, inducing an illegal control-flow
transfer in the target system is one common step. Control-
Flow Integrity (CFI [1]) protects a software system by en-
forcing a pre-determined control-flow graph. In addition to
providing strong security, CFI enables static analysis on low-
level code. This paper evaluates whether CFI-enabled static
analysis can help build efficient and validated data sandbox-
ing. Previous systems generally sandbox memory writes for
integrity, but avoid protecting confidentiality due to the high
overhead of sandboxing memory reads. To reduce overhead,
we have implemented a series of optimizations that remove
sandboxing instructions if they are proven unnecessary by
static analysis. On top of CFI, our system adds only 2.7%
runtime overhead on SPECint2000 for sandboxing memory
writes and adds modest 19% for sandboxing both reads and
writes. We have also built a principled data-sandboxing ver-
ifier based on range analysis. The verifier checks the safety
of the results of the optimizer, which removes the need to
trust the rewriter and optimizer. Our results show that the
combination of CFI and static analysis has the potential of
bringing down the cost of general inlined reference monitors,
while maintaining strong security.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.2.4
[Software Engineering]: Software/Program Verification;
D.3.4 [Programming Languages]: Processors

General Terms
Security, Verification

Keywords
Control-Flow Integrity, Static Analysis, Binary Rewriting,
Inlined Reference Monitors
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1. INTRODUCTION
Software attacks often exploit vulnerabilities such as buffer

overflows and format-string handling errors that are com-
mon in large software systems. In many attacks, one essen-
tial step is to induce an illegal control transfer through, for
example, overwriting a return address or a function pointer.
The illegal control transfer might jump to new code injected
by attackers, as in code-injection attacks; it might jump to
code already in the target program, as in return-into-libc at-
tacks. The extreme case is Return-Oriented Programming
(ROP [9, 26]), which can induce any malicious behavior by
combining code snippets in the program with arbitrary con-
trol flow. In all these attacks, the expected control-flow
graph of the target program is violated.

Control-Flow Integrity (CFI [1,2]) is a defensive technique
that can foil attacks based on illegal control transfers. A
program satisfies control-flow integrity if it follows a pre-
determined control-flow graph. The expected control-flow
graph serves as a specification of control transfers allowed
in the program. A software-based CFI implementation in-
serts runtime checks to enforce the specification. The run-
time checks will catch and prevent illegal control transfers
attempted by attacks.

It is generally believed that CFI is a principled defense
mechanism against Return-Oriented Programming (ROP).
Previous research has shown that ad-hoc defenses fail to pre-
vent simple variants of ROP [9]. The inventors of ROP have
argued that research should instead focus on comprehensive
defenses such as CFI.

An attractive property of CFI is that it can be enforced on
almost all software, including legacy C and C++ code, and
even assembly code without breaking applications and with-
out requiring special hardware features (e.g., segment reg-
isters). Software-based Fault Isolation (SFI) [31] is another
policy that can be applied in a language-agnostic way. How-
ever, SFI only provides weak integrity for control-flow and
as such, does not prevent return-into-libc and ROP attacks
completely. Furthermore, the lack of an enforced control-
flow graph prevents the use of standard compiler techniques
for optimizing SFI enforcement mechanisms. In contrast,
the enforced control-flow graph of CFI supports standard
dataflow analysis and optimizations. Thus, in addition to
protecting applications from control-hijacking attacks, CFI
provides a basis for efficient enforcement of any inlined ref-
erence monitor. In particular:

• Optimization. Optimizers can perform static analy-
sis to eliminate unnecessary security checks if they are



statically proven unnecessary. This reduces the run-
time overhead of enforcing security.

• Verification. Static analysis can be used to verify the
result of binary rewriting and optimizations. The ver-
ification checks whether the rewritten and optimized
code obeys the desired security policy, removing the
binary rewriter and the optimizer from the TCB.

The original work on CFI recognized the potential for
static analysis, but did not take advantage of it. In this
paper, we investigate how CFI-enabled static analysis can
be used to cut the overheads of SFI-style data sandboxing.
Previous implementations of SFI either rely upon segment
registers to enforce data sandboxing, or else use software-
based techniques but only instrument memory writes due
to the high overhead of sandboxing reads. In contrast, we
consider software-only techniques, which are applicable to a
much wider class of architectures, and consider sandboxing
both memory writes as well as reads.

We highlight key contributions of the paper as follows:

• We describe a series of optimizations for efficient data
sandboxing in Sec. 4. These optimizations utilize static
analysis including liveness analysis and range analysis
to eliminate unneeded security checks. Our implemen-
tation on x86-32 adds modest runtime overheads on
top of CFI (an average of 2.7% for write protection and
19% for read-and-write protection on SPECint2000).

• We propose to use range analysis as a principled way
to verify data-sandboxing optimizations in Sec. 5. A
single verifier can verify all our implemented optimiza-
tions and beyond.

• Since CFI is used as the basis for static analysis, re-
ducing the overhead of the CFI enforcement itself is
beneficial. In Sec. 6, we describe two simple optimiza-
tions for faster CFI. The optimizations cut the runtime
cost of CFI by more than half.

• Our ideas have been implemented in LLVM and fully
evaluated using benchmark programs. Sec. 7 describes
our implementation and evaluation.

2. RELATED WORK
We divide closely related work into three categories.

SFI. Software-based fault isolation (SFI, [12, 14, 21, 25, 28,
31, 34]) rewrites unsafe code to insert sandboxing instruc-
tions before memory and control-transfer instructions. The
inserted instructions prevent the code from accessing mem-
ory outside of a designated data region and executing in-
structions outside of a designated code region. For avoiding
high overhead, most SFI systems sandbox memory writes
but not memory reads. NaCl x86-32 [34] restrains memory
access through hardware segmentation that applies to mem-
ory reads as well as writes. Hardware segmentation, how-
ever, is unavailable on x86-64 and ARM. As a result, NaCl’s
implementations on these processors rely on SFI to sandbox
memory writes [25] (or both reads and writes with a sig-
nificant performance penalty [6]). Our SFI support reduces
overhead through static analysis and in principle applies to
processors with or without segmentation.

Figure 1: The insufficiency of chunk-based control-
flow integrity for static analysis.

One subtle requirement of SFI is that some form of control-
flow integrity should be enforced so that inserted checks can-
not be bypassed. PittSFIeld [21] and NaCl [25, 34] adopt
the chunk-based control-flow integrity. Code is divided into
atomic chunks of fixed sizes such as 16 bytes. A computed
jump is restricted by runtime checks to target only begin-
nings of chunks. Checks before memory operations cannot
be bypassed as long as they are in the same chunk.

The chunk-based control-flow integrity guarantees only
an imprecise control-flow graph and is insufficient for most
static analyses. To illustrate this point, we use loop opti-
mizations as an example. The control-flow graph in Fig. 1
would contain a loop if those dotted edges do not exist.
In chunk-based control flow integrity, a ret instruction can
jump to any chunk beginnings (because the instruction makes
a control transfer according to a value from the untrusted
stack). These control transfers are represented by dotted
edges in the figure. Therefore, basic blocks in the loop body
have to be broken into chunks. Worse, the control-flow graph
in the figure is no longer a loop because by definition there
should be no edges from nodes outside of the loop to the
loop’s internal nodes. Consequently, loop optimizations can-
not be performed.

SFI traditionally provides coarse-grained data sandbox-
ing with respect to one big, contiguous data region. Recent
work [4, 5, 8] extends SFI to provide fine-grained data in-
tegrity, which accommodates multiple data regions of var-
ious granularity (e.g., at the byte level). However, confi-
dentiality is not supported. Furthermore, the implementa-
tion seems to rely upon re-compiling the source, whereas our
rewriter and verifier work directly on the assembly language.
Consequently, the compiler is not in the TCB in our system.
Finally, their techniques do not work for multi-threaded ap-
plications; our system is thread safe since it assumes a con-
current attack model. We believe the general idea of using
static analysis for optimization and verification should also
benefit fine-grained data sandboxing.

XFI. Extended Fault Isolation (XFI, [11]) is a closely re-
lated system in its approach. Similar to our system, XFI
builds on CFI and exploits the control-flow graph for stronger
security and for performance. On the one hand, XFI’s goal



is to provide a more comprehensive protection system for
loading untrusted code. For instance, it also provides a
high-integrity stack for protecting return addresses. On the
other hand, our system explores more aggressive optimiza-
tions such as loop optimizations. The static analysis enables
our system to have more efficient support for data sand-
boxing (more comparison with XFI will be in the following
sections).

Program shepherding. Instead of static rewriting, pro-
gram shepherding [18] (as well as systems in [22, 24]) re-
lies on dynamic binary rewriting to enforce security. One
downside of dynamic rewriting is the whole dynamic opti-
mization and monitoring framework is in the TCB, whereas
only a verifier needs to be trusted in static rewriting. Fur-
thermore, program shepherding relies on page protection for
memory protection; it cannot prevent untrusted application
code from reading outside its data region (e.g., the dynamic
rewriter’s own code and data regions are readable).

Static analysis on low-level code. Analyzing low-level
code such as assembly code is more difficult than analyzing
source code due to the lack of structured information. De-
spite this difficulty, there has been plenty of research that
applies static analysis to low-level code for various purposes
(e.g., [7, 29, 33]). We use static analysis to reduce runtime
overhead of SFI-style data sandboxing. Compared with pre-
vious low-level code analysis, our static analysis is simpler
and more specialized. First, since our attack model (de-
scribed in Sec. 3) assumes data memory can change between
instructions, our static analysis only needs to track proper-
ties of registers. Second, some of our static analysis such as
range analysis is geared toward the purpose of optimizing
checks for guaranteeing safe access within data memory.

Code sandboxing. Also related is the general idea of sand-
boxing. SFI-style sandboxing, the topic of this paper, is a
particular form of sandboxing untrusted code. Isolating un-
trusted code in a trusted environment has long been a goal of
computer-security research. This line of work includes sys-
tems that monitor and restrict OS system calls [15–17, 23],
systems that isolate device drivers from kernel code [30],
systems that isolate web applications from browsers [10,34],
and systems that isolate native code from language virtual
machines [19,27].

3. ATTACK MODEL AND SECURITY POL-
ICY

We adopt the CFI attack model. It is both conceptu-
ally simple and realistic. It assumes separate code and data
regions for an untrusted program. The data region is not
executable.1 An attacker is then modeled as a thread that
runs in parallel with the program. The concurrent attacker
thread can overwrite any part of the data region, includ-
ing the stack, the heap, and global data. This model ef-
fectively assumes that contents in the data region can arbi-
trarily change between any two instructions in the program.
This rather pessimistic assumption captures real attack sce-
narios and is also amenable to formal analysis [2].

One implication of the attack model is that the code re-

1This assumption can be discharged either by the hardware
No-eXecute (NX) protection or by a pure software approach;
the software approach sandboxes indirect jumps so that con-
trol always stays in the code region.

gion and registers cannot be changed by the attacker di-
rectly. Note this assumption by itself does not prevent indi-
rect changes induced by the attacker to the code region and
registers. For instance, if the program loads into a register
some contents from the data region, the register can after-
wards hold any value supplied by the attacker as he/she con-
trols the data region. As another example, an unconstrained
memory write in the program could possibly change the code
region—one goal of data sandboxing is to prevent this from
happening by sandboxing memory writes.

Control-flow security policy. A CFI policy for a pro-
gram is a graph whose nodes consist of addresses of basic
blocks, and whose edges connect control instructions (i.e.,
jumps and branches) to allowed destination basic blocks.
Within a procedure, this corresponds directly to a basic
control-flow graph. For dynamic control flow (i.e., a jump
through a register, a return, or other computed jumps), the
outgoing edges correspond to the possible addresses where
control is allowed to transfer.

Definition 1. Code C respects its CFI policy P if and
only if when executed, all control transfers in C respect the
graph P.

CFI policies are in essence NDFA’s or regular expressions
denoting sets of possible control traces. In contrast, XFI
provides a richer language of policies (corresponding to push-
down automata), which can ensure that functions only re-
turn to the code that called them. CFI can only ensure that
functions return to some possible caller. On the other hand,
XFI requires a high-integrity stack to store return addresses
(which is broken by our strong attack model) and introduces
issues with setjmp, exceptions, continuations, and other un-
conventional control-transfers. Thus, CFI has the attrac-
tive property that it breaks fewer applications than XFI,
supports a strong, concurrent attack model, and provides
tighter bounds on control-flow than SFI.

Data sandboxing policy. This policy dictates that any
memory access in the untrusted program must be within
the data region. Consequently, integrity and confidentiality
of memory outside of the data region are ensured. Integrity
is usually more important for security than confidentiality.
But in highly sensitive applications such as military appli-
cations, protecting confidentiality can be as important.

We next formalize the data sandboxing policy. We assume
there is a large, contiguous region of data memory that un-
trusted code can read and write. We assume the data region
begins with the address DB (Data Begin) and ends with the
address DL (Data Limit). That is, the address range of the
data region is [DB, DL], inclusive. Following previous SFI
systems, we set up guard zones of size GSize before and after
the data region. The size of a guard zone can vary depend-
ing on the host policy. It is further assumed that memory
access to locations in guard zones can be efficiently trapped
(through page protection). Fig. 2 depicts the data region,
the guard zones, and relevant parameters.

Definition 2. A memory access is allowed if the address
is within the range [DB-GSize, DL+GSize].2

2The size of the memory access is irrelevant because of the
presence of the guard zones and the assumption that access
to guard zones is trapped. Furthermore, the policy in our
implementation also allows reading the code region because
the inserted CFI checks read IDs from the code region. This
is a special case and will be ignored in the rest of the paper.



Figure 2: Data region and guard zones.

4. DATA SANDBOXING OPTIMIZATIONS
We next present a series of optimizations that signifi-

cantly cut the data-sandboxing cost. The data-sandboxing
optimizations utilize static analysis to identify optimization
opportunities. The optimizations are similar to those per-
formed in an optimizing compiler, except they need to not
only improve performance but also maintain the security.

Note this section assumes CFI is already in place; Sec. 6
will discuss CFI and its own optimizations. One immediate
benefit of CFI is it obviates the need for chunk-based control-
flow integrity [21, 25]. CFI provides better security as its
control-flow graph is more precise. Moreover, it also avoids
the large number of no-ops that have to be inserted for in-
struction alignment. The extra no-ops add both spatial and
temporal overheads. PittSFIeld [21] reports that inserted
no-ops account for about half of the runtime overhead of
enforcing data integrity. NaCl [25] reports that instruction
alignment accounts for most of its performance overhead.

In addition, CFI enables many other optimizations. Be-
fore we discuss these optimizations, we present a running
example that will be used to illustrates how the optimiza-
tions work.

A running example. Fig. 3 presents the example. For
clarity, this and other programs in the paper use a pseudo-
assembly syntax whose notation is described as follows. We
use “:=” for an assignment. When an operand represents a
memory address, it is put into square brackets. For instance,
[esp] denotes a memory-address operand with the address
in esp, while esp (without square brackets) represents a reg-
ister operand. We will also use the syntax “if ... goto

...” to represent a comparison followed by a conditional
jump instruction (i.e., jcc).

Fig. 3(a) shows an instruction that transfers the contents
at memory location ecx+4 to ebx. For protecting confiden-
tiality, the address has to be sandboxed before the memory
read. Fig. 3(b) presents an unoptimized sequence of instruc-
tions that performs the sandboxing. In the sequence, eax is
used as a scratch register for holding the intermediate value.
Since the old value of eax might be needed afterwards, the
sequence pushes eax onto the stack and later restores its
value. The flags register, which stores status flags such as
the overflow flag, also needs to be saved and restored since
the bitwise-and instruction changes the status flags and the

old flags might be needed for the subsequent computation.
The constant $DMask denotes the data-region mask. Fol-
lowing PittSFIeld [21], a single bitwise-and sandboxing in-
struction is used to ensure that the resulting address is in
the data region. For instance, if the data region starts from
0x20000000 and is of 16MB size, then $DMask is 0x20ffffff.
The sandboxing instruction will also be called a check in the
rest of the paper.

4.1 Liveness analysis
Our system performs liveness analysis on registers and the

flags register to remove operations that save and restore old
values when they are unnecessary.

Register liveness analysis. Oftentimes inlined reference
monitors require the use of scratch registers for storing inter-
mediate results. For instance, eax is used as a scratch regis-
ter in Fig. 3(b). One simple approach to avoiding the over-
head of saving and restoring scratch registers is to reserve a
dedicated scratch register. As an example, PittSFIeld [21]
reserves ebx as the scratch register. This approach has the
downside of increasing the register pressure, especially on
machines with few general-purpose registers.

Our alternative approach relies on register liveness analy-
sis. Liveness analysis is a classic compiler analysis technique.
At each program point, the liveness analysis calculates the
set of live registers; that is, those registers whose values are
used in the future. A register is dead if it is not live. At a
program point, a dead register can be used as the scratch
register without saving its old value (since the old value will
no longer be needed). When no dead register is available,
we can resort to the old way of saving the scratch register
on the stack.

For the running example in Fig. 3, if register liveness anal-
ysis determines that eax is dead after the instruction ebx :=

[ecx + 4], then there is no need to save and restore its old
value; the sequence in Fig. 3(c) is then sufficient.

We implemented an intra-procedural register liveness anal-
ysis with extra assumptions about the calling convention. It
is a backward dataflow analysis and uses a standard work-
list algorithm. The analysis takes advantage of the cdecl

calling convention to deal with function calls and returns.
In particular, the live-out of a return instruction is those
callee-saved registers (including ebx, esi, and edi) together
with registers that contain the return value. The live-in of
a call instruction is the live-out subtracted by the set of
caller-saved registers (including eax, ecx, and edx).

We note the correctness of liveness analysis (including the
assumption about the calling convention) does not affect
security. When liveness analysis produced wrong results,
some registers would not be properly saved and restored;
this would affect the correctness of the program, but not
the security of its memory operations.

Flags-register liveness analysis. We also perform the
flags-register liveness analysis to remove unnecessary opera-
tions for saving and restoring the flags register. Saving and
restoring the status flags are costly on modern processors.
For the running example, if the analysis determines that the
flags register is dead after the instruction ebx := [ecx +

4], then the sequence in Fig. 3(d) can be used.
For simplicity, we perform the flags-register liveness anal-

ysis only within basic blocks. We assume flags are not used
across basic blocks (meaning the register is assumed dead at



(a) Original instruction

ebx := [ecx + 4]

(b) Unoptimized instruction sequence

push eflags

push eax

eax := ecx + 4

eax := eax & $DMask

ebx := [eax]

pop eax

pop eflags

(c) When eax is a dead register

push eflags

eax := ecx + 4

eax := eax & $DMask

ebx := [eax]

pop eflags

(d) When the flags register is dead

eax := ecx + 4

eax := eax & $DMask

ebx := [eax]

(e) After in-place sandboxing

ecx := ecx & $DMask

ebx := [ecx + 4]

Figure 3: A running example for illustrating optimizations. DMask is the data-region mask.

the end of a basic block). This seems to be an assumption
used by compilers and has been confirmed by our experi-
ments on SPECint2000.3

PittSFIeld [21] avoids saving and restoring the flags regis-
ter by disabling instruction scheduling in compilers. It pre-
vents compilers from moving comparisons away from their
corresponding branching instructions. In contrast, our ap-
proach allows instruction scheduling within basic blocks.

4.2 In-place sandboxing
Thanks to the guard zones before and after the data re-

gion, there are special cases where we can avoid using a
scratch register. A commonly used address pattern in mem-
ory operations is a base register plus a small displacement
(which is a static constant value). For instance, this pattern
is used to access fields of a data structure; the base register
holds the base address of the data structure and the dis-
placement is the offset of a field. When a memory address
of this pattern is used, we can perform the optimization
that sandboxes just the base register. The running exam-
ple in Fig. 3 uses address ecx+4. Therefore, the sequence in
Fig. 3(e) sandboxes the base register ecx directly.

The safety of this transformation is straightforward to see.
After “ecx := ecx & $DMask”, register ecx is constrained
within the data region. Consequently, ecx+4 must be within
the data region plus the guard zones (assuming GSize ≥ 4).
The memory operation is then allowed according to the data
security policy.

We call this optimization in-place sandboxing since it sand-
boxes the base register directly and avoids the use of an extra
scratch register. Additionally, it has the benefit of making
it convenient to remove redundant checks, as shown next.

4.3 Optimizations based on range analysis
According to the data-sandboxing policy, a memory access

is allowed if the address range is within the valid range of the
data region plus guard zones. This definition naturally leads
to a strategy of removing unnecessary checks: if the address
range of a memory access can be statically determined to

3This might be broken by hand-written assembly code. But
similar to register liveness analysis, the correctness of this
analysis does not affect security.

ecx ∈ [−∞,+∞]
ecx := ecx & $DMask

ecx ∈ [DB, DL]
eax := [ecx + 4]

ecx ∈ [DB, DL]
... // assume ecx not changed in between

ecx ∈ [DB, DL]
ecx := ecx & $DMask

ecx ∈ [DB, DL]
ebx := [ecx + 8]

ecx ∈ [DB, DL]

Figure 4: An example demonstrating redundant
check elimination.

be within the valid range, then it is unnecessary to have a
check before the memory access.

To realize this idea, we have implemented range analy-
sis on low-level code. At each program point, the range
analysis determines the ranges of values in registers. The
range [−∞, +∞] is the universe and gives no information.
For instance, after an operation that loads contents from
the data region into a register, the register’s range becomes
[−∞, +∞]; this reflects that the attack model allows arbi-
trary changes to the data region. In many other situations,
a more accurate range can be obtained. For instance, after
“ecx := ecx & $DMask”, the range of ecx is [DB, DL] (i.e.,
the data region).

We have implemented two optimizations that take advan-
tage of range analysis. We discuss them next.

Redundant check elimination. This optimization takes
an input program with checks embedded in and aims to elim-
inate redundant checks. It is performed in two steps. In the
first step, range analysis is performed on the input program.
In the second step, it uses the results of range analysis and
heuristics to decide whether a check can be eliminated. For
instance, if the range of r is within the data region before
“r := r & $DMask”, then the check is equivalent to a no-
op and thus unnecessary. As another example, suppose (1)
the instruction sequence is “r := r & $DMask” immediately
followed by a memory dereference through r; (2) the range
of r before the sequence is within the data region plus the
guard zones, then the check can also be removed because the
memory dereference is safe without the check. The general



(a) Unoptimized sequence

esi := eax

ecx := eax + ebx * 4

edx := 0

loop:

if esi≥uecx goto end

esi := esi & $DMask

edx := edx + [esi]

esi := esi + 4

jmp loop

end:

(b) Hoisting checks outside of the loop

esi := eax

ecx := eax + ebx * 4

edx := 0

esi := esi & $DMask

loop:

if esi≥uecx goto end

edx := edx + [esi]

esi := esi + 4

jmp loop

end:

Figure 5: An example demonstrating loop check hoisting.

criterion for a removal is if it can be statically determined
that the removal will not result in unsafe access in the fol-
lowing memory dereference.

We next examine a simple example in Fig. 4. Imagine ecx

is the base address of a C struct. The program then loads
two fields from the struct. Each memory read is preceded
by a check. The figure also shows the ranges of ecx at each
program point. With range analysis, the optimizer can tell
that the second check can be removed because the range of
ecx is already in the data region before the check.

Loop check hoisting. This optimization hoists checks so
that one single check outside the loop is sufficient to guar-
antee safety of all memory access in the loop.

Fig. 5 presents an example program showing how static
analysis enables hoisting checks outside of loops. The assem-
bly program in the figure calculates the sum of an integer
array (with base address a and length len) and roughly cor-
responds to the following C program:

sum = 0;

int *p = a;

while (p < a + len) {

sum = sum + *p;

p = p + 1;

}

In Fig. 5, eax holds the initial address of the array, ebx

holds the length, and esi holds the pointer value p. With-
out optimization, esi needs to be sandboxed within the loop
body. The sandboxing instruction is underlined in Fig. 5.
That sandboxing instruction can actually be moved outside
of the loop, avoiding the per-iteration sandboxing (how the
optimization is achieved will be discussed shortly). The op-
timized code is shown in Fig. 5(b).

It is instructive to understand why the code in Fig. 5(b)
is safe even though it sandboxes only the beginning address
of the array and there is no restriction on the array length.
To show its safety, it is sufficient to show that esi ∈ [DB,

DL+4] is a loop invariant. The condition is clearly true at the
beginning of the loop since the sandboxing instruction gives
esi ∈ [DB, DL]. Next, assuming the condition holds at the
beginning of the loop body, we try to re-establish it at the
end of the loop body. The key step in the reasoning is that
esi ∈ [DB, DL] holds after edx := edx + [esi]—a hard-
ware trap would be generated if esi were in guard zones.
With that result, the following add-by-four operation clearly
re-establishes the loop invariant. What has been exploited
is the following observation: since access to guard zones can

Figure 6: Range analysis result for the program in
Figure 5(a), after the check is duplicated at the loop
pre-head. Only the ranges of esi are included.

be efficiently trapped, a successful (untrapped) memory ac-
cess actually serves as a “check”and narrows the range down
to the data region.

The loop optimization is implemented in multiple steps,
outlined as follows:

(1) Dominator trees are used to identify loops in assembly
code. Backward edges in a dominator tree is then used
to locate loops. Calculation of the dominator tree and
loop identification are standard techniques in an opti-
mizing compiler [3].

(2) Given an input program, any check that appears in the
loop body is duplicated at the beginning of a loop. For
the program in Fig. 5(a), this step results in the pro-
gram depicted in Fig. 6. Notice the instruction “esi :=

esi & $DMask” is duplicated before the loop. One worry
of eagerly sandboxing before the loop is it might change
the program behavior. However, if we assume good code
will always have pointers that point into the data region,
then eager sandboxing should be an idempotent opera-
tion for good code and it breaks only programs that
would violate the policy.4

4Certain programming practices use pointers that are out-



(3) A range analysis is then performed to decide if any check
is unnecessary. Fig. 6 also presents the ranges of esi at
each program point. Notice the range of esi is within
the data region plus guard zones (assuming GSize ≥
4). This enables the optimizer to remove the check in
the loop body. After its removal, we get the optimized
program in Fig. 5(b). There is also a possibility that the
optimizer decides that the check in the loop cannot be
removed; in this case, the corresponding one that was
added before the loop is removed.

The above strategy of loop optimizations has the benefit
of performing only one round of range analysis even if the
program has multiple loops or nested loops. However, it
does not capture every loop-hoisting opportunity. Another
strategy is to hoist checks outside the loop one by one, and
use the verifier (discussed in the next section) to check the
safety of intermediate results; but it involves backtracking
and performing a range analysis after each intermediate step.

5. VALIDATING DATA SANDBOXING
Of the three SFI optimizations we have discussed, live-

ness analysis is not security critical: security would not be
affected even if it produced wrong results. On the other
hand, the other two optimizations change checks, remove
checks, or move checks to a different place. Security would
be affected if they were wrong. Since low-level optimiza-
tions are extremely error prone, it is always a good idea to
have a separate verifier to verify the results of optimizations,
instead of trusting the optimizer.

Previous SFI verifiers assume checks appear immediately
before memory operations. With that assumption, a simple
linear scan of the code is sufficient to check the code’s safety.
Since our optimizer eliminates checks and moves checks away
from memory operations, a more complex verifier is needed
to check the result of optimizations. This does increase the
size of the TCB, but seems unavoidable when verifying the
optimization results.

We have implemented a verifier based on range analysis
which can check the results of our optimizations. The basic
idea is to perform range analysis over the optimized pro-
gram and determine the range of addresses used in memory
operations; the program is verified if every such address is
statically determined to be within [DB-GSize, DL+GSize].

The following example is the code in Fig. 4 after the opti-
mizer has removed the second check. Range analysis deter-
mines that the address range in the first memory access is
[DB+4, DL+4] and the address range in the second memory
access is [DB+8, DL+8]. Assuming GSize ≥ 8, both are safe
according to the policy.

ecx ∈ [−∞,+∞]
ecx := ecx & $DMask

ecx ∈ [DB, DL]
eax := [ecx + 4]

ecx ∈ [DB, DL]
... // assume ecx not changed in between

ecx ∈ [DB, DL]
ebx := [ecx + 8]

ecx ∈ [DB, DL]

side the object bounds, but those pointers should stay inside
the data region. For instance, pointers that are one element
past the end of an array in the heap stay in the data region
if the stack is in the upper portion of the data region.

In a similar fashion, range analysis can determine the
safety of the program in Fig. 5(b), which is the result af-
ter loop optimizations.

Our verifier is robust in the sense it can verify many more
optimizations, including those we have not implemented.
New optimizations, including more aggressive loop optimiza-
tions, can be verified by the same verifier. Another use of
the verifier is for speculative optimizations. The optimizer
can eliminate a check or move a check to a different place
even when it is not clear whether that transformation would
result in a safe program. After the transformation, the veri-
fier can be used to check the safety of the resulting program;
if the verifier fails, the optimizer can resort to the old pro-
gram. We have not tried any speculative optimizations.

6. MORE EFFICIENT CONTROL-FLOW
SANDBOXING

We describe two simple CFI optimizations that result in a
more efficient implementation. This reduces the overhead of
protection schemes that build on CFI, including our data-
sandboxing scheme.

6.1 Original CFI instrumentation
As background information, we discuss CFI’s original mech-

anism for ensuring that a program’s execution follows a pre-
determined control-flow graph [1, 2]. CFI uses a combina-
tion of static verification and dynamic instrumentation for
enforcement. For a direct jump instruction, a static verifier
can easily check that the target is allowed by the control-
flow graph, without incurring any runtime overhead. For a
computed jump, CFI inserts runtime checks into the pro-
gram being protected to ensure that the control transfer is
consistent with the control-flow graph.

Fig. 7 presents an example illustrating how CFI checks
are performed. It shows how a direct function call is in-
strumented in CFI. Instruction “call fun” invokes a known
function with name fun. The direct call itself does not need
instrumentation—whether this is legitimate is checked stat-
ically. The return instruction in the body of fun, however,
needs instrumentation since it takes from the data region a
return address, which may be corrupted by the attacker.

The instrumentation is performed in two steps. First, an
ID is inserted after the call instruction (note the same ID
is inserted after all possible call sites to fun). Second, the
return instruction is changed to a sequence of instructions
that checks the correct ID is at the target before the control
transfer. The ID is embedded in a side-effect free prefetch

instruction. The instruction takes a memory location as
its operand, and moves data from memory closer to a lo-
cation in the cache hierarchy. It is a hint to the processor
and does not affect program semantics. Instrumentation of
other computed jumps is similar: IDs are inserted at the
allowed targets and runtime checks ensure correct IDs are
there before control transfers. Note that IDs are inserted
into the code region and cannot be changed by the attacker.
Furthermore, since the data region is not executable, the at-
tacker cannot manufacture new code in the data region with
the correct ID in it and jump to it for execution.

6.2 CFI optimizations
We next describe two simple CFI optimizations.

Jumping over prefetch instructions. The original CFI



Original code Code after instrumentation Comment

call fun call fun

prefetchnta [$ID] a side-effect free instruction with an ID embedded

ret ecx := [esp] retrieve the return address
esp := esp + 4 adjust the stack pointer
if [ecx+3]�=$ID goto error check ID; ecx+3 is the address of the ID since the opcode

of the prefetch instruction takes three bytes
jmp ecx transfer the control

Figure 7: A CFI example.

Original code Code after instrumentation

call fun call fun

prefetchnta [$ID]

ret ecx := [esp]

esp := esp + 4

if [ecx+3]�=$ID goto error

ecx := ecx + 7

jmp ecx

Figure 8: New CFI instrumentation by skipping
over prefetch instructions.

implementation inserts prefetch instructions at targets of
computed jumps. However, prefetch instructions incur sig-
nificant overhead by fetching data from memory and in-
creasing cache pressure. Therefore, the first optimization
jumps over prefetch instructions to avoid their execution.
Fig. 8 presents the new code sequence after the optimiza-
tion. The only difference is a new instruction (underlined)
that adds seven to the register that holds the target ad-
dress.5 Since the size of a prefetch instruction is seven, it is
skipped over. This optimization trades a prefetch instruc-
tion for a cheaper add instruction. Our evaluation shows
this alternative significantly cuts the runtime overhead of
CFI (from 24.90% to 7.74%). Designers of the original CFI
mentioned this alternative, but it seems it has not been eval-
uated for performance comparison.

Jump table check optimization. Computed jumps are
often used for efficient compilation of switch statements.
Most compilers generate a jump table for a switch state-
ment. The starting address of each branch of the switch
statement is stored as an entry in the jump table. Fig. 9
presents an example. The first column presents the typical
sequence of instructions used by compilers to transfer the
control to a branch of a switch statement. It assumes edx

stores an index into the jump table and JT is a constant de-
noting the start address of the jump table. edx is scaled by
a factor of four when loading an entry from the jump table
because each entry is assumed to be a four-byte address.

The middle column lists the code sequence after the CFI
instrumentation. Because “jmp ecx” is a computed jump,
the instruction checks that there is a correct ID at the target.

Jump tables are usually stored in read-only sections of ob-
ject code. If we assume jump tables cannot be modified by

5The sequence takes care of only control-flow sandboxing.
In our implementation for data confidentiality, esp is sand-
boxed to stay in the data region and ecx is sandboxed to
stay in the code region.

attackers6, then control-flow integrity is satisfied if (1) the
index into the jump table is within bounds and (2) all jump
targets in the jump table are legal according to the control-
flow graph. The second condition can be checked statically
and the first condition needs a bounds check. The last col-
umn in Fig. 9 presents the new sequence with the bounds
check, assuming the size of the jump table is 16. We use >u

for the unsigned comparison so that large numbers would
not be treated as negative. The bounds check involves only
register values and avoids retrieving IDs from memory. Fur-
thermore, it turns out that the LLVM compiler, in which
our prototype implementation is developed, already inserts
bounds checks before using a jump table. This further sim-
plifies the work of our CFI rewriter. Note our system does
not depend on the assumption that LLVM emits bounds
checks since the CFI verifier would complain if it did not.

This jump-table check optimization is essentially a spe-
cial case of the idea of encoding target tables for computed
jumps, as implemented in HyperSafe [32]. The effectiveness
of this optimization depends on how often switch statements
are used in programs.

7. IMPLEMENTATION AND EVALUATION
We next discuss our prototype implementation and eval-

uation of the implementation on benchmark programs.

7.1 Prototype implementation
Our implementation is built in LLVM 2.8 [20], a widely

used compiler infrastructure. We inserted a pass for CFI
rewriting, a pass for data sandboxing rewriting and opti-
mization, and a pass for CFI and data-sandboxing verifi-
cation. All these passes are inserted right before the code-
emission pass. There are approximately 14,000 lines of C++
code in total added to LLVM (including comments and code
for dumping debugging information). Our rewriters essen-
tially perform assembly-level rewriting. We chose LLVM
as our implementation platform because LLVM preserves
helpful meta-information at assembly level (such as the con-
trol flow graph). It also provides a clean representation of
compiled programs, which benefits instrumentation and op-
timization. In addition, it is easy to extend LLVM since
inserting an extra pass into its compilation process requires
nothing more than a registration of the pass.

Control flow graph. Control-flow graphs are constructed
with the help of LLVM. In particular, the LLVM compiler
preserves meta-information so that a precise intra-procedural

6This assumption can be discharged by either putting jump
tables into code region as in HyperSafe [32] or have read-only
data write-protected through page protection.



Original code CFI instrumentation After optimization

ecx := [$JT + edx*4] ecx := [$JT + edx*4] if edx>u15 goto error

jmp ecx if [ecx+3]�=$ID goto error ecx := [$JT + edx*4]

ecx := ecx + 7 ecx := ecx + 7

jmp ecx jmp ecx

Figure 9: Jump table check optimization. Assume JT is a constant denoting the start address of the jump
table, edx holds the index into the jump table, and the jump table is of size 16.

control-flow graph can be reconstructed at the assembly
level. The inter-procedural control-flow graph (or the call
graph) is conservatively estimated by allowing a computed
call instruction to target any function. The precision of
the call graph could certainly be improved through further
static analysis such as inter-procedural control flow analy-
sis and it would benefit security. On the other hand, since
all our optimizations are intra-procedural, the precision of
the call graph is not critical to these optimizations. In fact,
we suspect inter-procedural static analysis would not result
in significant performance improvement; the attack model
assumes the data region can arbitrarily change between in-
structions and thus inter-procedural analysis on the data
region such as shape analysis would be inapplicable.

Linker scripts, loader, and libraries. LLVM generates
object code with multiple sections (.bss, .data, .text, .ro-
data, and others). We developed linker scripts to link mul-
tiple sections into three sections (code, data and read-only
data) at certain start addresses. We modified PittSFIeld’s
loader to set up code and data regions and load executable
code. PittSFIeld’s loader does not protect confidentiality
and allows sandboxed code to read outside of the sandbox;
we modified the loader so that it copies arguments into the
sandbox. Furthermore, the three sections are locked down
with the desired permissions with mprotect: the code sec-
tion is readable and executable; the data section is readable
and writable; the read-only data section is readable (it in-
cludes data such as jump tables and string literals). We also
reused PittSFIeld’s library wrappers and libraries, including
its reimplementation of library functions for dynamic mem-
ory allocation (malloc, free, and so on).

Verifier. We have implemented a CFI and a data sand-
boxing verifier. The CFI verifier is similar to previous CFI
verifiers and checks whether IDs and checks are inserted at
appropriate places. We do not elaborate on its details. The
implementation of the data-sandboxing verifier contains ap-
proximately 7,000 lines of C++ code. The majority of the
code is a large switch statement that calculates the ranges
of registers for machine instructions. There are over 3261
distinct machine opcodes inside LLVM including opcodes
and pseudo opcodes for IA-32, IA-64, x87 FPU, SSE, SSE2,
SSE3, and others. The verifier could be shortened by group-
ing instructions into cases and omitting instructions that IA-
32 does not support. Given its large size, its own trustwor-
thiness should be independently validated (e.g., by testing
or by developing its correctness proof in a theorem prover);
we leave this to future work.

At the beginning of a function and any basic block that a
computed jump might target, the ranges of general-purpose
registers (eax, ebx, ecx, edx, esi and edi) are assumed to
be the universe ([−∞, +∞]) and the ranges of esp and ebp

to be the data region.7 For each instruction, the verifier
updates the ranges of the registers that are defined by the
instruction or used to compute a memory location. For ex-
ample, after “movl (%ebx), %eax”, the range of ebx is nar-
rowed down to the data region if the old range of ebx is
within the data region plus guard zones; furthermore, the
range of eax is set to be the universe because it is loaded
from the untrusted data region.

Since the lattice in range analysis is of infinite height, its
termination is not guaranteed unless some widening strategy
is adopted. Our implementation uses a simple one: if a node
has been processed more than a constant number of times,
the ranges of registers that have not been stabilized are set to
be the universe. Other than this aspect, our implementation
of range analysis follows a standard worklist algorithm.

During the development, the verifier helped us catch sev-
eral implementation errors in early versions of the optimizer;
these errors would be hard to find by hand.

7.2 Performance evaluation
To evaluate our implementation, we conducted experi-

ments to test its runtime overhead on SPECint2000. Ex-
periments were conducted on a Linux CentOS 5.3 box with
Intel Xeon X5550 CPU at 2.66 GHz and 12GB of RAM.
All experiments were averaged over six runs. Three bench-
mark programs in SPECint2000 could not be compiled by
LLVM: eon is written in C++ and LLVM’s front end (clang)
does not support the version of the standard C++ library
in CentOS 5.3; perlbmk and parser could not be compiled
with the optimization level 3 and seem incompatible with
LLVM. All other benchmark programs were compiled with
the optimization level 3.

Table 1 presents the runtime percentage increases of CFI
compared to uninstrumented programs for SPECint2000.
The CFI row reports the results of our CFI implementa-
tion. On average, it adds 7.74% runtime overhead. The
CFI.jt.no-skip row shows the results of disabling the opti-
mization of jumping over prefetch instructions. Disabling
this optimization results in significant performance degra-
dation: the overhead shoots up to almost 25%. This is
due to the execution of costly prefetch instructions. The
CFI.no-jt.skip row reports the results when the optimiza-
tion for jump-table checks is disabled. The performance
improvement by this optimization is modest, suggesting op-
portunities for this optimization in SPECint2000 are limited.
CFI.no-jt.no-skip is the same as the original CFI implemen-
tation by Abadi et al [2]. They reported an average overhead
of 16% on SPECint2000 on an older system (Pentium 4 x86
processor at 1.8 GHz with 512 MB of memory and Windows
XP SP2). The experiments show that our CFI implemen-

7Before a function call and a computed jump, the verifier
checks that esp and ebp are indeed in the data region.



gzip vpr gcc mcf crafty gap vortex bzip2 twolf average

CFI (%) 3.47 1.05 2.52 0.09 11.47 13.87 26.78 6.36 4.04 7.74
CFI.jt.no-skip (%) 14.72 3.23 4.14 0.14 25.28 82.03 67.66 22.18 4.74 24.90
CFI.no-jt.skip (%) 3.84 1.01 2.46 0.04 15.28 13.61 28.39 6.32 3.18 8.24

CFI.no-jt.no-skip (%) 14.45 3.77 5.73 0.09 34.11 81.73 72.96 22.29 5.68 26.76

Table 1: CFI runtime overheads for SPECint2000.

gzip vpr gcc mcf crafty gap vortex bzip2 twolf average

DS-W.CFI (%) 6.21 5.82 2.29 1.80 12.80 13.16 29.77 14.18 7.55 10.40

DS-RW.CFI.no-opt (%) 384.34 429.38 129.36 452.51 523.66 1092.98 690.73 748.27 476.25 547.50
DS-RW.live (%) 24.38 28.06 6.30 8.15 39.67 58.02 43.04 23.58 52.91 31.57

DS-RW.live.in-place (%) 24.29 26.69 5.81 5.13 39.12 49.23 39.08 23.65 48.69 29.08
DS-RW.CFI (%) 23.66 25.12 4.96 4.53 37.70 44.49 34.55 23.41 45.94 27.15

Table 2: Runtime overheads of data sandboxing plus CFI for SPECint2000.

tation is efficient even though we have not yet implemented
sophisticated CFI optimizations.

Table 2 presents the runtime percentage increases for data
sandboxing. All numbers in the table include the CFI over-
head because our data-sandboxing optimizations build on
top of CFI. The row of DS-w.CFI contains the numbers
when sandboxing only the writes. The average overhead is
10.40%, which means it adds roughly 2.7% on top of CFI.
The overhead is low considering it sandboxes memory writes
and enforces CFI.

Table 2 also presents the overheads when sandboxing both
reads and writes. To understand the overhead reduction
of the three data-sandboxing optimizations, it presents the
overheads incrementally with respect to the optimizations.
The row of DS-RW.CFI.no-opt contains the numbers when
all optimizations are disabled. In this case, a check is in-
serted before every memory access; scratch registers and the
flags register are saved on and restored from the stack. Over-
heads are high because the saving and restoring registers and
the flags register are costly. The row of ”DS-RW.CFI.live”
contains the numbers after performing liveness analysis to
remove unnecessary saving and restoring operations. After
this optimization, the overheads are significantly lower. The
row of ”DS-RW.CFI.live.in-place”contains the numbers with
both liveness analysis and the technique of in-place sand-
boxing; this drives down about 2% of the overhead. Finally,
the last row contains numbers when optimizations based on
range analysis are turned on; they cut down another 2% of
the overhead. When all optimizations are turned on, data
sandboxing adds about 19% on top of CFI. The overhead
for protecting both reads and writes is modest and it is ac-
ceptable for applications where confidentiality is of great
concern.

Performance comparison with related systems. We
next compare our system with PittSFIeld and XFI, two
systems that adopt software-only techniques for protection.
PittSFIeld reports an average of 21% for SPECint2000 for
sandboxing both memory writes and jumps. Our system has
a lower overhead (10.4% for CFI and write protection) and
provides stronger control-flow integrity; it can additionally
sandbox memory reads with acceptable overheads.

To compare with XFI, we have evaluated our implemen-
tation on the Independent JPEG Group’s image-decoding

reference implementation. The XFI paper reports both fast-
path and slowpath overheads for the JPEG program; the
XFI fastpath overhead is directly comparable with our im-
plementation. The following table shows the performance
overheads of our implementation compared to XFI’s fast-
path implementation, for images of different sizes. The
columns of DS-W.CFI and DS-RW.CFI report the numbers
of our system for write protection and read-write protection,
respectively. The columns of XFI-W and XFI-RW report
XFI’s numbers for write protection and read-write protec-
tion, respectively. In both cases, our implementation reports
lesser overheads. It seems that our optimizations are effec-
tive at bringing down the overheads. Note the comparison
is preliminary as we have tested only on one program and
LLVM is a different compiler from the one used in XFI.

Size DS-W.CFI DS-RW.CFI XFI-W XFI-RW

4k (%) 2.90 15.53 18 78
14k (%) 2.32 13.09 18 80
63k (%) 9.99 25.27 17 75

229k (%) 9.09 14.17 15 68

8. FUTURE WORK
We plan to implement more static-analysis based opti-

mizations. First, more aggressive loop optimizations based
on induction variable analysis should further bring down the
data sandboxing overhead. Second, CFI can also benefit
from static analysis—an ID check for a computed jump is
unnecessary if the jump targets can be statically determined
to obey the control-flow policy.

Our prototype implementation is built for x86-32 and we
have not addressed the portability issue. We plan to port
our implementation to newer architectures including x86-
64 and ARM. These architectures should benefit more since
they do not have the hardware segmentation support.

SFI is a special kind of Inlined Reference Monitors (IRM [12,
13]). IRMs can enforce fine-grained safety properties. Clearly,
the methodology of combining CFI with static analysis to
reduce the runtime overhead applies to general IRMs. For
instance, fine-grained memory protection, which allows ac-
cess control of multiple data regions of small sizes [4, 5, 8],
can also benefit from CFI-enabled optimizations. Dynamic
taint tracking is another example.



9. CONCLUSIONS
In this research, we have explored how CFI-enabled static

analysis can help build efficient and validated system for
data sandboxing, for the case of protecting both integrity
and confidentiality. We believe the combination of CFI and
static analysis provides a sweet point in design space for en-
forcing security policies on untrusted or buggy software: it
provides strong security, enables sound optimization strate-
gies, is thread safe, and can be easily integrated into the
software tool chain. The combination can possibly serve as
a foundation for improving efficiency of general inlined ref-
erence monitors for enforcing advanced security polices.
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[12] Ú. Erlingsson and F. Schneider. SASI enforcement of
security policies: A retrospective. In Proceedings of the
New Security Paradigms Workshop (NSPW), pages 87–95.
ACM Press, 1999.
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