skip to main content
10.1145/2047196.2047246acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

Elasticurves: exploiting stroke dynamics and inertia for the real-time neatening of sketched 2D curves

Published:16 October 2011Publication History

ABSTRACT

Elasticurves present a novel approach to neaten sketches in real-time, resulting in curves that combine smoothness with user-intended detail. Inspired by natural variations in stroke speed when drawing quickly or with precision, we exploit stroke dynamics to distinguish intentional fine detail from stroke noise. Combining inertia and stroke dynamics, elasticurves can be imagined as the trace of a pen attached to the user by an oscillation-free elastic band. Sketched quickly, the elasticurve spatially lags behind the stroke, smoothing over stroke detail, but catches up and matches the input stroke at slower speeds. Connectors, such as lines or circular-arcs link the evolving elasticurve to the next input point, growing the curve by a responsiveness fraction along the connector. Responsiveness is calibrated, to reflect drawing skill or device noise. Elasticurves are theoretically sound and robust to variations in stroke sampling. Practically, they neaten digital strokes in real-time while retaining the modeless and visceral feel of pen on paper.

Skip Supplemental Material Section

Supplemental Material

fp242.m4v

m4v

10 MB

References

  1. Adobe Systems Inc. (2010). Adobe Illustrator CS 5. http://www.adobe.com/products/illustrator.htm.Google ScholarGoogle Scholar
  2. Autodesk Inc. (2010). Autodesk Sketchbook Pro 2010. http://area.autodesk.com/sketchboo.Google ScholarGoogle Scholar
  3. Anderson, D., Bailey, C., & Skubic, M. (2004). Hidden Markov Model Symbol Recognition for Sketch-Based Interfaces. AAAI Fall Symposium (pp. 15--21). Menlo Park, CA: AAAI Press.Google ScholarGoogle Scholar
  4. Bae, S.-H., Balakrishnan, R., & Singh, K. (2008). ILoveSketch:As-Natural-As-Possible System for Creating 3D Curve Models. Proc. UIST , 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Balakrishnan, R., Fitzmaurice, G., Kurtenbach, G., & Buxton, W. (1999). Digital Tape Drawing. Proc. UIST, 161--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Barzel, R. (1997). Faking Dynamics of Ropes and Strings. IEEE CGA, 3, pp. 31--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Coleman, P., & Singh, K. (2006). Cords: Geometric Curve Primitives for Modeling Contact. IEEE CGA, 3, pp. 72--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Farin, G., Rein, G., Sapidis, N., & Worsey, A. (1987). Fairing Cubic B-Spline Curves. Computer Aided Geometric Design , 91--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fiume, E. (1995). Isometric Piecewise Polynomial Curves. Computer Graphics Forum , 1, pp. 47--58.Google ScholarGoogle ScholarCross RefCross Ref
  10. Fung, R., Lank, E., Terry, M., & Latulipe, C. (2008). Kinematic Templates: End-User Tools for Content-Relative Cursor Manipulations. Proc. UIST , 47--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Grossman, T., Balakrishnan, R., Kurtenbach, G., Fitzmaurice, G., Khan, A., & Buxton, B. (2002). Creating Principal 3D Curves with Digital Tape Drawing. Proc. CHI , 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Haeberli, P. (1989). DynaDraw. Silicon Graphics Corporation. Mountain View, California, USA. http://www.graficaobscura.com/dyna/index.htm.Google ScholarGoogle Scholar
  13. Igarashi, T., Kadobayashi, R., Mase, K., & Tanaka, H. (1998). Path Drawing for 3D Walkthrough. Proc. UIST, (pp. 173--174). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Igarashi, T., Kawachiya, S., Matsuoka, S., & Tanaka, H. (1997). In Search for an Ideal Computer-Assisted Drawing System. INTERACT, (pp. 104--111). Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Igarashi, T., Matsuoka, S., & Tanaka, H. (1999). Teddy: A Sketching Interface for 3D Freeform Design. SIGGRAPH, (pp. 409--416). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Igarashi, T., Matsuoka, S., Kawachiya, S., & Tanaka, H. (1997). Interactive Beautification: A Technique for Rapid Geometric Design. Proc. UIST, (pp. 105--114). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Labahn, G., MacLean, S., Marzouk, M., Rutherford, I., & Tausky, D. (2006). MathBrush: An Experimental Pen-Based Math System. Dagstuhl Seminar Proceedings, Challenges in Symbolic Computation.Google ScholarGoogle Scholar
  18. Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematics and figural aspects of drawing movements. Acta Psychologica , pp. 115--130.Google ScholarGoogle Scholar
  19. McCrae, J., & Singh, K. (2008). Sketching Piecewise Clothoid Curves. SBIM, pp. 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Microsoft Corporation (2009). Windows 7 Journal.Google ScholarGoogle Scholar
  21. Ramos, G., Boulos, M., & Balakrishnan, R. (2004). Pressure Widgets. Proc. CHI, (pp. 487--494). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Rubine, D. (1991). Specifying gestures by example. Proc. SIGGRAPH, (pp. 329--337). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Schmidt, R., Khan, A., Singh, K., & Kurtenbach, G. (2010). Analytic Drawing of 3D Scaffolds. Proc. SIGGRAPH ASIA (to appear). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sezgin, T., & Davis, R. (2005). HMM-based efficient sketch recognition. Proc. IUI , 281--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sezgin, T., Stahovich, T., & Davis, R. (2001). Sketch Based Interfaces: Early Processing for Sketch Understanding. Proc. PUI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Shao, L., & Zhou, H. (1996). Curve Fitting with Bezier Cubics. Graphical Models and Image Processing , 3, pp. 223--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Singh, K. (1999). Interactive Curve Design using Digital French Curves. Proc. I3D, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Soukoreff, R., & MacKenzie, I. (2009). An informatic rationale for the speed-accuracy trade-off. Proc. IEEE SMC, (pp. 2969--2975). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Terzopoulos, D., & Qin, H. (1994). Dynamic NURBS with Geometric Constraints for Interactive Sculpting. ACM TOG, 2, pp. 103--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Thorne, M., Burke, D., & van de Panne, M. (2004). Motion Doodles: An Interface for Sketching Character Motion. ACM TOG, v.23 n.3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tian, F., Ao, X., Hongan, W., Setlur, V., & Dai, G. (2008). Tilt menu: using the 3D orientation information of pen devices to extend the selection capability of pen-based user interfaces. Proc. CHI, (pp. 1371--1380). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tsang, S., Balakrishnan, R., Singh, K., & Ranjan, A. (2004). A suggestive interface for image guided 3d sketching. Proc. CHI, (pp. 591--598). Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Weber, E. (1846). Der Tastsinn und das Gemeingefühl. In Wagner, Handlewörterbuch der Physiologie (Vol. iii).Google ScholarGoogle Scholar
  34. Wobbrock, J., Wilson, A., & Li., Y. (2007). Gestures without Libraries, Toolkits or Training: a 1 Recognizer for User Interface Prototypes. Proc. UIST. (pp 159--168). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Elasticurves: exploiting stroke dynamics and inertia for the real-time neatening of sketched 2D curves

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        UIST '11: Proceedings of the 24th annual ACM symposium on User interface software and technology
        October 2011
        654 pages
        ISBN:9781450307161
        DOI:10.1145/2047196

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 16 October 2011

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        UIST '11 Paper Acceptance Rate67of262submissions,26%Overall Acceptance Rate842of3,967submissions,21%

        Upcoming Conference

        UIST '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader