skip to main content
10.1145/2047196.2047261acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

SpeckleSense: fast, precise, low-cost and compact motion sensing using laser speckle

Authors Info & Claims
Published:16 October 2011Publication History

ABSTRACT

Motion sensing is of fundamental importance for user interfaces and input devices. In applications, where optical sensing is preferred, traditional camera-based approaches can be prohibitive due to limited resolution, low frame rates and the required computational power for image processing. We introduce a novel set of motion-sensing configurations based on laser speckle sensing that are particularly suitable for human-computer interaction. The underlying principles allow these configurations to be fast, precise, extremely compact and low cost. We provide an overview and design guidelines for laser speckle sensing for user interaction and introduce four general speckle projector/sensor configurations. We describe a set of prototypes and applications that demonstrate the versatility of our laser speckle sensing techniques.

Skip Supplemental Material Section

Supplemental Material

fp421.mp4

mp4

33.2 MB

References

  1. 3Dconnexion. Space 3d mice. http://www.3dconnexion.com/. July 2011.Google ScholarGoogle Scholar
  2. Apple Magic Mouse. http://www.apple.com/magicmouse/. July 2011.Google ScholarGoogle Scholar
  3. Avago Technologies. Adns-9500 sensor.http://www.avagotech.com/docs/AV02--1726EN. July 2011.Google ScholarGoogle Scholar
  4. Axsotic. 3d-spheric-mouse. http://www.axsotic.com/. July 2011.Google ScholarGoogle Scholar
  5. Balakrishnan, R., Baudel, T., Kurtenbach, G., and Fitzmaurice, G.. The Rockin' Mouse: Integral 3D Manipulation on a Plane. Proc. CHI '97 (1997), 311--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bathiche, S. N., and Starkweather, G. K., Data input device for tracking and detecting lift-off from a tracking surface by a reflected laser speckle pattern, U.S. Patent 7,161,582., 200.Google ScholarGoogle Scholar
  7. Baudisch, P., Sinclair, M., and Wilson, A., Soap: a pointing device that works in mid-air. Proc. UIST '06 (2006), 43--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Butler, A., Izadi, S., and Hodges, S. SideSight: multi-"touch" interaction around small devices. Proc. UIST '08 (2008), 201--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dainty, J. C. Laser Speckle and Related Phenomena. Springer-Verlag, Berlin (1984).Google ScholarGoogle Scholar
  10. DePue, M. T., Schroeder, D. W., and Xie, T., Optical device that measures distance between the device and a surface, U.S. Patent 7,427,981, 2008.Google ScholarGoogle Scholar
  11. 1Fitzmaurice, G. W. Situated information spaces and spatially aware palmtop computers. Commun. ACM 36, 7 (Jul. 1993), 39--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Goodman, J. W.. Speckle phenomena in Optics: Theory and Applications. Roberts and Company, Englewood, 2007.Google ScholarGoogle Scholar
  13. Gyration. Air mouse. http://www.gyration.com/. July 2011.Google ScholarGoogle Scholar
  14. Hachet, M., Pouderoux, J., and Guitton, P. A camera-based interface for interaction with mobile handheld computers. Proc. I3D '05 (2005), 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Harrison, C. and Hudson, S. E., Abracadabra: wireless, high-precision, and unpowered finger input for very small mobile devices, Proc. UIST '09 (2009), 121--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Harrison, C. and Hudson, S. E., Minput: enabling interaction on small mobile devices with high-precision, low-cost, multipoint optical tracking, Proc. CHI '10 (2010), 1661--1664. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hinckley, K., Pierce, J., Sinclair, M., and Horvitz, E. Sensing techniques for mobile interaction. Proc. UIST '00 (2000). 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hinckley, K., Sinclair, M., Hanson, E., Szeliski, R., and Con-way, M. The Videomouse: A Camera-based Multi-degree-of-freedom Input Device. Proc. UIST '99 (1999), 103--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Liao, C.-M., Huang, P. S., Chiu, C.-C., Hwang, Y.-Y., Ma, S.-I. Real-time finger-controlled navigation system using laser speckle patterns, Optical Engineering, Volume 49, Issue 5 (2010).Google ScholarGoogle Scholar
  20. Liao, C.-M., Huang, P. S., Hwang, Y.-Y., Chen, M., Chiu, C.-C. Robust technique of analyzing and locating laser speckle patterns for optical computer mice, Optics and Lasers in Engineering, 47, 7--8 (2009), 875--883.Google ScholarGoogle ScholarCross RefCross Ref
  21. Logitech. Mx air mouse. http://www.logitech.com/en-us/mice-pointers/mice/devices/3443/. July 2011.Google ScholarGoogle Scholar
  22. MacKenzie, S., Soukoreff, R., and Pal, C. A Two-ball Mouse Affords Three Degrees of Freedom. CHI EA '97 (1997) 303--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mohan, A., Woo, G., Hiura, S., Smithwick, Q., Raskar, R. Bokode: imperceptible visual tags for camera based interaction from a distance. Proc. SIGGRAPH '09 (2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ni, T. and Baudisch, P., Disappearing mobile devices. Proc. UIST '09 (2009), 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Olwal, A. LightSense: Enabling spatially aware handheld inte-raction devices. Proc. ISMAR '06 (2006). 119--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Olwal, A., and Feiner, S. Spatially Aware Handhelds for High-Precision Tangible Interaction with Large Displays. Proc. TEI '09 (2009), 181--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Philips. Laser Doppler technology. http://lasersensors.philips.com/. July 2011.Google ScholarGoogle Scholar
  28. Popov, P., Pulov, S., and Pulov, V. A laser speckle pattern technique for designing an optical computer mouse, Optics and Lasers in Engineering, 42, 1 (2004), 21--26.Google ScholarGoogle ScholarCross RefCross Ref
  29. PrimeSense. http://www.primesense.com/. July 2011.Google ScholarGoogle Scholar
  30. Raskar, R., Nii, H., deDecker, B., Hashimoto, Y., Summet, J., Moore, D., Zhao, Y., Westhues, J., Dietz, P., Barnwell, J., Nayar, S., Inami, M., Bekaert, P., Noland, M., Branzoi, V., and Bruns, E. 2007. Prakash: lighting aware motion capture using photosensing markers and multiplexed illuminators. Proc. SIGGRAPH '07 (2007), Article 36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and Fuchs, H. The office of the future: a unified approach to image-based modeling and spatially immersive displays. Proc. SIGGRAPH '98 (1998). 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Reilly, D., Rodgers, M., Argue, R., Nunes, M., and Inkpen, K. Marked-up maps: Combining paper maps and electronic information resources. Personal and Ubiquitous Computing, 10, 4 (2006), 215--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Reilly, R. and Hanson, A. Gesture recognition for augmentative human computer interaction, Engineering in Medicine and Biology Society, 2 (1995), 1275--1276.Google ScholarGoogle ScholarCross RefCross Ref
  34. Rekimoto, J. and Nagao, K. The world through the computer: Computer augmented interaction with real world environments. Proc. UIST '95 (1995), 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Rekimoto, J. Tilting operations for small screen interfaces. Proc. UIST '96 (1996), 167--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sanneblad, J. and Holmquist, L. E., Ubiquitous graphics: combining hand-held and wall-size displays to interact with large images. Proc. AVI '06 (2006), 373--377. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Schroeder, D. W., DePue, M. T., Kakarala, R., Xie, T. VanWiggeren, G. D. Tracking motion using an interference pattern, U.S. Patent 7,737,947, 2010.Google ScholarGoogle Scholar
  38. Villar, N., Izadi, S., Rosenfeld, D., Benko, H., Helmes, J., Westhues, J., Hodges, S., Ofek, E., Butler, A., Cao, X., and Chen, B. Mouse 2.0: Multi-touch Meets the Mouse. Proc. UIST '09 (2009), 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wang, J. and Canny, J. TinyMotion: camera phone based interaction methods. CHI '06 EA, 339--344, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Welch, G. and Foxlin, E. Motion Tracking: No Silver Bullet, but a Respectable Arsenal. Computer Graphics and Applications, 22, 6 (2002), 24--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wilson, A. and Shafer, S., Xwand: UI for intelligent spaces, in Proc CHI '03 (2003), 545--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yang, X.-D., Mak, E., McCallum, D., Irani, P., Cao, X., and Izadi, S. Lensmouse: augmenting the mouse with an interactive touch display, Proc. CHI '10 (2010), 2431--2440. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yee, K. Peephole displays: Pen interaction on spatially aware hand-held computers. Proc. CHI '03 (2003), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. SpeckleSense: fast, precise, low-cost and compact motion sensing using laser speckle

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '11: Proceedings of the 24th annual ACM symposium on User interface software and technology
      October 2011
      654 pages
      ISBN:9781450307161
      DOI:10.1145/2047196

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 October 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '11 Paper Acceptance Rate67of262submissions,26%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader