skip to main content
10.1145/2076354.2076378acmconferencesArticle/Chapter ViewAbstractPublication PagesissConference Proceedingsconference-collections
research-article

Design of unimanual multi-finger pie menu interaction

Published:13 November 2011Publication History

ABSTRACT

Context menus, most commonly the right click menu, are a traditional method of interaction when using a keyboard and mouse. Context menus make a subset of commands in the application quickly available to the user. However, on tabletop touchscreen computers, context menus have all but disappeared. In this paper, we investigate how to design context menus for efficient unimanual multi-touch use. We investigate the limitations of the arm, wrist, and fingers and how it relates to human performance of multi-targets selection tasks on multi-touch surface. We show that selecting targets with multiple fingers simultaneously improves the performance of target selection compared to traditional single finger selection, but also increases errors. Informed by these results, we present our own context menu design for horizontal tabletop surfaces.

References

  1. Annett, M., Grossman, T., and Fitzmaurice, G. Medusa: A Proximity-Aware Multi-touch Tabletop. To appear in Proc. UIST'11. ACM, NY, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Au, O. K. C., and Tai, C. L. Multitouch finger registration and its applications. In Proc. OZCHI '10, ACM, NY, 2010, pp. 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bailly, G., Demeure, A., Lecolinet, E., and Nigay, L. MultiTouch menu (MTM). In Proc. IHM '08, ACM, New York, 2008, pp. 165--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bailly, G., Lecolinet, E., and Guiard, Y. Finger-count & radial-stroke shortcuts: 2 techniques for augmenting linear menus on multi-touch surfaces. In Proc. CHI '10, ACM/SIGCHI, NY, 2010, pp. 591--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bartindale, T., Harrison, C., Olivier, P., and Hudson S. E. SurfaceMouse: supplementing multi-touch interaction with a virtual mouse. In Proc. TEI '11, ACM, NY, 2010, pp. 293--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Benko, H., Wilson, A. D., and Baudisch, P. Precise selection techniques for multi-touch screens. In Proc. CHI '06, ACM/SIGCHI, NY, 2006, pp. 1263--1272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bier, E., Stone, M., Pier, K., Buxton, W., DeRose, T., Toolglass and magic lenses: the see-through interface. In Proc. SIGGRAPH '93, ACM, NY, 1993, pp. 73--80 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Brandl, P., Leitner, J., Seifried, T., Haller, M., Doray, B., and To, P. Occlusion-aware menu design for digital tabletops. In Proc. CHI '09, ACM/SIGCHI, NY, 2009, pp. 3223--3228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Callahan, J., Hopkins, D., Weiser, M., and Shneiderman, B. 1988. An empirical comparison of pie vs. linear menus. In Proc. CHI '88. ACM/SIGCHI, New York, 1988, pp. 95--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Esenther A. and Ryall, K. 2006. Fluid DTMouse: better mouse support for touch-based interactions. In Proc. AVI '06, ACM, NY, pp. 112--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Forlines, C., Vogel, D., and Balakrishnan, R. Hybrid-Pointing: Fluid switching between absolute and relative pointing with a direct input device. In Proc. UIST '06, ACM/SIGCHI, NY, 2006, pp. 211--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Forlines, C., Wigdor, D., Shen, C., and Balakrishnan, R. Direct-touch vs. mouse input for tabletop displays. In Proc. CHI '07. ACM/SIGCHI, NY, 2007, pp. 647--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Häger-Ross, C. and Schieber, M. H. Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies. The Journal of Neuroscience (2000), pp. 8542--8550.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hesselmann, T., Flöring, S., and Schmitt, M. Stacked Half-Pie menus: navigating nested menus on interactive tabletops. In Proc. ITS '09, ACM, NY, 2009, pp. 173--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hinckley, K., Baudisch, P., Ramos, G., and Guimbretiere, F. Design and analysis of delimiters for selection-action pen gesture phrases in scriboli. In Proc. CHI '05. ACM, New York, (2005), pp. 451--460. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Holz, C. and Baudisch, P. 2010. The generalized perceived input point model and how to double touch accuracy by extracting fingerprints. In Proc. CHI '10, ACM/SIGCHI, NY, 2010, pp. 581--590. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hopkins, D. The design and implementation of pie menus. Dr. Dobb's Journal, 16, 12 (1991), 16--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kin, K., Agrawala, M., and DeRose, T. Determining the benefits of direct-touch, bimanual, and multifinger input on a multitouch workstation. In Proc. GI 2009, Canadian Information Processing Society, Toronto, 2009, pp. 119--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kurtenbach, G., and Buxton, W. User learning and performance with marking menus. In Proc. CHI'94, ACM/SIGCHI, NY, 1994, pp. 258--264 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kurtenbach, G., Fitzmaurice, G. W., Owen, R. N, and Baudel, T. The Hotbox: efficient access to a large number of menu-items.. In Proc. CHI'99, ACM/SIGCHI, NY, 1999, pp. 231--237 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lepinski, G. J., Grossman, T., and Fitzmaurice, G. The design and evaluation of multitouch marking menus. In Proc. CHI '10, ACM/SIGCHI, NY, 2010, pp. 2233--2242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Li, Y., Hinckley, K., Guan, Z., and Landay, J. A. Experimental analysis of mode switching techniques in pen-based user interfaces. In Proc. CHI '05. ACM, New York, 2005, pp. 461--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Matejka, J., Grossman, T., Lo, J., and Fitzmaurice, G. The design and evaluation of multi-finger mouse emulation techniques. In Proc. CHI '09, ACM/SIGCHI, NY, 2009, pp. 1073--1082. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Micire, M., Desai, M., Drury, J. L., McCann, E., Norton, A., Tsui, K. M. and Yanco, H. A. Design and validation of two-handed multi-touch tabletop controllers for robot teleoperation. In Proc. IUI '11, ACM, NY, 2011, pp. 145--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Moscovich, T. and Hughes, J. F. Indirect mappings of multi-touch input using one and two hands. In Proc. CHI '08, ACM/SIGCHI, NY, 2008, pp. 1275--1284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. North, C., Dwyer, T., Lee, B., Fisher, D., Isenberg, P., Robertson, G., and Quinn, K. I. Understanding multi-touch manipulation for surface computing. In Proc. HCII'09, Springer-Verlag, Berlin, 2009, pp. 236--249. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pheasant, S. and Hastlegrave, C. Bodyspace: anthropometry, ergonomics and the design of the work. CRC, 2006.Google ScholarGoogle Scholar
  28. Reilly, K. and Hammond, G. Human Handedness: Is there a Difference in the Independence of the Digits on the Preferred and Non-preferred Hands. Experimental Brain Research, 156, 2 (2004), 255--262.Google ScholarGoogle Scholar
  29. Rekimoto, J. SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. In Proc. CHI '02, ACM/SIGCHI, NY, 2002, pp. 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Santello, M., Soechting, J. Matching object size by controlling finger span and hand shape. Somatosensory & Motor Research, 14, 3(1997), 203--212.Google ScholarGoogle Scholar
  31. Sasangohar, F., MacKenzie, I. S., & Scott, S. D. Evaluation of mouse and touch input for a tabletop display using Fitts' reciprocal tapping task. In Proc. HFES'09, Human Factors and Ergonomics Society, Santa Monica, CA, 2009, pp. 839--843.Google ScholarGoogle ScholarCross RefCross Ref
  32. van Doren, C. Cross-modality Matches of finger span and line length. Perception & Psychophysics, 57, 4 (1995), 555--568.Google ScholarGoogle ScholarCross RefCross Ref
  33. Vogel, D. and Balakrishnan, R. Occlusion-aware interfaces. In Proc. CHI '10, ACM/SIGCHI, NY, 2010, pp. 263--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wobbrock, J. O., Morris, M. R., and Wilson, A. D. User-defined gestures for surface computing. In Proc. CHI '09, ACM/SIGCHI, NY, 2009, pp. 1083--1092. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wu, M. and Balakrishnan, R. Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays. In Proc. UIST '03, ACM/SIGCHI, NY, 2003, pp. 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wu, M., Shen, C., Ryall, K., Forlines, C., and Balakrishnan, R. Gesture Registration, Relaxation, and Reuse for Multi-Point Direct-Touch Surfaces. In Proc. IEEE TABLETOP 2006. pp. 183--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhao, S., Agrawala, M., Hinckley, K. Zone and polygon menus: using relative position to increase the breadth of multi-stroke marking menus. In Proc. CHI '06, ACM/SIGCHI, NY, 2006, pp. 1077--1086. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Design of unimanual multi-finger pie menu interaction

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ITS '11: Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces
      November 2011
      295 pages
      ISBN:9781450308717
      DOI:10.1145/2076354

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 November 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate119of418submissions,28%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader