Object Reuse and Behavior Adaptation in Java-like Languages *

Lorenzo Bettini

Dip. di Informatica, Universita di Torino,
Corso Svizzera 185, 10149 Torino, Italy

bettini@di.unito.it

Abstract

Inheritance, which is a basic mechanism in mainstream object-
oriented languages, introduces a strong coupling which limits mod-
ularity and code reuse. Furthermore, static class hierarchies cannot
easily deal with unpredictable dynamic adaptations of the object
behavior. In order to overcome these limitations, we propose new
linguistic constructs for composing objects in a Java-like language.
Objects are intended as featherweight components which can be
used in multiple compositions, and object types specify not only the
implemented functionalities, but also the required methods, which
will be provided by other components during composition. Thus
the language supports flexible object reuse and adaptation of the
object behavior at run time. The static type discipline guarantees
that method calls on well-typed object compositions are safe.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.1.5 [Programming
Techniques]: Object-oriented Programming

General Terms Languages, Theory

Keywords Featherweight Java, Object Composition, Delegation,
Type systems

1. Introduction

Class-based object-oriented languages provide inheritance and
method overriding, with late binding, to account for code reuse and
dynamic specialization, respectively. However, these mechanisms
do not suffice for modeling situations when objects have to mod-
ify their behavior according to conditions known only at run time.
Indeed, inheritance introduces a strong coupling between classes,
which limits modularity and safe reuse (we refer to [14, 29], and to
the references therein, for an insightful review of the limitations of
inheritance).

To overcome these limitations, a number of design patterns
were proposed in [17] that rely on object composition. The alter-
native programming style, proposed by these patterns, consists in
writing small software components (units of reuse), that can be

*This work has been partially funded by MIUR (PRIN 2008 DISCO)
and by EU Collaborative project n. 257414 Autonomic Service-Component
Ensembles (ASCENS).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPPJ’11, August 24-26, 2011, Kongens Lyngby, Denmark.

Copyright © 2011 ACM 978-1-4503-0935-6. ... $10.00

111

Betti Venneri

Dip. di Sistemi e Informatica, Universita di Firenze
Viale Morgagni 65, 50134 Firenze, Italy

venneri@dsi.unifi.it

composed in several ways at run time. This leads, for instance, to
the use of wrappers (see, e.g., [7, 10]), that are interposed between
the objects and their clients in order to implement new behavior.
Besides the fact that design patterns require manual programming,
which is prone to errors, these composition-based solutions are lim-
ited by the underlying model of object composition and method for-
warding which is intrinsic to class-based languages. Namely, when
an object forwards a message to its component, to achieve a new
functionality, the self variable results to be bound to the compo-
nent, then the successive method calls are applied to the compo-
nent, not to the whole object. This is known as the self problem and
the method forwarding above is called consultation (we refer to
[22] for an insightful discussion on the self problem and the limits
of consultation). With consultation we lose the transparent redi-
rection [27]; when we manually implement object composition and
method forwarding we cannot achieve a real dynamic object inher-
itance and dynamic method redefinition. For instance, when imple-
menting the decorator pattern [17], we will surely experience the
anomaly of the self problem [24], i.e., broken delegation [18].

As opposite to consultation, delegation, originally introduced
by Lieberman [24], seems to be the suitable method call mechanism
to reuse code and achieve dynamic method redefinition (see, e.g.,
[11, 16, 30]). By delegation, when A forwards to B the execution of
a message, this is bound to the sender A, in such a way that any
successive method call will be executed on A.

In this paper we address the above issues from a foundational
point of view by proposing a core language, called CompOblJ
(Composing Objects in Java-like languages) which integrates new
constructs for composing objects into a statically-typed class-based
setting, using delegation for method calls: the proposed language
aims at flexible code reuse and dynamic adaptation of the object
behavior, while retaining static type checking and type safety.

The basic idea is to adopt a generalized notion of object, which
is inspired by the component-based programming [32]. Objects are
intended as featherweight components which can be used in differ-
ent compositions to modify their behavior based on dynamic con-
ditions and independently from inheritance hierarchies. Namely, an
object type is intended as the specification of what the object pro-
vides and what it requires from other components. The composition
of that object with other objects will provide the requested code so
specifying the object behavior.

In CompObl class definitions, besides standard method defini-
tions, can declare also the required methods, namely the expected
and the redefining methods. Expected methods are similar to tradi-
tional abstract methods: their bodies are missing and must be pro-
vided during object composition. Analogously, redefining methods
are similar to method overriding in class-based inheritance: they
redefine a method of another object inside a composition. Then,
we call these methods “redefining”, and we call the corresponding
overridden versions “redefined”. As in Java an overridden method

can access the previous implementation by super, in a redefining
method we can access the redefined version with the special vari-
able next (next plays the role of a “horizontal” version of super).
Summarizing, required methods formalize the variable part of the
object behavior, which will be completely or partially provided dur-
ing object composition. Classes with required methods are then in-
complete, and their instances are called incomplete objects; stan-
dard classes (objects) of Java-like languages are represented by
classes with no requested method.

The incomplete methods, expected and redefined, must be pro-
vided during object composition by other objects. Thus, object
composition is the run-time version of class inheritance, and del-
egation in composed objects corresponds to dynamic binding for
method invocation in standard derived classes. We see this as a sort
of dynamic inheritance since it implies both substitutivity (that is, a
composed object can be used where a standard object is expected)
and dynamic code reuse (since composition permits supplying, at
run time, the missing methods). In particular, some behavior that
was not foreseen when the class hierarchy was implemented may
be supplied dynamically by composition with existing objects, thus
generating an unanticipated reuse of code and a sharing of com-
ponents. Then, we can use incomplete and complete objects as our
re-usable building blocks to assemble at run time, on the fly, brand
new objects. Incomplete objects provide two forms of code reuse:
vertical (i.e., the code reuse achieved via standard class inheritance)
and horizontal (i.e., the one achieved via object composition).

One of our key design choices is to integrate object composition
within the nominal subtyping mechanism of Java-like languages.
However, in order to enhance run-time flexibility in composing ob-
jects, we implicitly use structural type checks during composition:
an object can be composed with any object with some of the re-
quested methods (provided the signatures match), no matter what
its class is. Therefore, the language we propose is not a manual
implementation of the object composition. In the case of a manual
implementation, the object should be stored in a class field, thus
forcing it to belong to a specific class hierarchy. Alternatively, one
could use type Object, and then call methods using Java Reflection
APIs or down-casts: this solution does not avoid possible run-time
exceptions due to missing methods. Finally, implementing delega-
tion manually would even be harder: it would require to modify all
the methods in order to pass explicitly “another” this, i.e., the one
bound to the original sender, in order to avoid the self problem [24]
and broken delegation [18].

CompODbl relies on the approach that has been presented in [6].
However, there is a significant difference regarding the model of
classes and objects. In [6] we had two separate hierarchies, stan-
dard classes (i.e., basically Java classes defined with the extends
clause) and incomplete classes (with the abstracts clause for the
superclass); for instance, standard classes could not inherit from in-
complete classes. In CompOblJ we unify the two concepts, in order
to enhance the flexibility of classes and, in particular, of the ob-
jects. As a consequence, with CompObJ we overcome the restric-
tions that were in [6] concerning the shape of object compositions,
the nature of objects involved in a composition, and in particular
the subtyping among objects. In [6] we only allowed an incom-
plete object to be composed with a complete object and the latter
had to provide all the methods required by the former; thus, object
compositions could produce complete objects only. Instead, to add
practicality to our approach, in CompOblJ object composition can
also produce incomplete objects and can compose two incomplete
objects.

This new model poses some crucial issues to the type sys-
tem. First of all, in our language, subclassing does not imply sub-
typing (indeed we use a different keyword for class inheritance,
inherits): an incomplete class C which inherits from a complete

class D (thus introducing some required methods) cannot be con-
sidered as a subtype of D since C’s instances are incomplete objects
and cannot be seen as D’s instances (which are instead complete
objects). Our types for objects formalize not only their original
class, but also the requirements that are still to be fulfilled (via ob-
ject composition). Thus, subtyping considers a type to be subtype
of another one if the former has less requirements than the latter.
However, to keep the nominal setting of Java-like languages, our
subtype relation still relies on a nominal subclass relation while
adding some structural checks: subclassing is a necessary condi-
tion for subtyping, but not a sufficient condition. Note that subtyp-
ing allows two objects to be compared independently from the way
they are generated: each of them can be a standard object (an in-
stance of a complete class), an instance of an incomplete class or
a composed object (either complete or incomplete). This is a cru-
cial difference between CompOblJ and the type system of [6] and
enhances the flexibility of object compositions where a component
can be replaced by a “less incomplete” (possibly complete) object
during the evaluation, by preserving the well-typedness.

Dealing with delegation, in particular in the presence of subtyp-
ing and object composition, requires an interesting technical treat-
ment to achieve a type-safe implementation. For instance, we need
to avoid possible name clashes for methods with the same name
but with different signatures (possibly due to the subtyping [16])
and possible accidental method overrides (when a method in the
incomplete object, which is not redefining, has the same name and
signature of a method in another component). In order to deal with
such problems, we employ a static annotation procedure (based on
static types) which is used in the operational semantics (Section 4)
to bind the self object this correctly in the method bodies.

The paper is organized as follows. Section 2 defines the core
language CompObl for object composition with delegation. Sec-
tions 3 and 4 present the type system and the operational semantics,
respectively. Section 5 illustrates the application of our proposal
to some programming scenarios. Section 6 discusses some related
works and Section 7 concludes.

2. CompObJ

In this section we present the core language CompOblJ (Composing
Objects in Java-like languages). It is based on FJ (Featherweight
Java), the minimal core calculus introduced in [21] for modeling
Java typing; we only omit type casts which are irrelevant for our
issues. The main features of CompObJ with respect to FJ can be
summarized in the following points:

1. a class can declare not only the provided methods but also the
required ones, then class instantiation can produce incomplete
objects;

2. we introduce a new operator for composing objects dynami-
cally, so manufacturing new objects where the actual imple-
mentation of (some of the) required methods is incrementally
provided or specialized by the added components;

3. method call on composed objects is performed by delegation;

4. subclassing does not directly imply subtyping, even though
subtyping still relies on a nominal type relation.

The abstract syntax of the CompObJ is defined in Figure 1
(grayed expressions are not written by the programmer, but are pro-
duced by the semantics, Section 4). We use the overline notation for
possibly empty sequences (e.g., “€” is a shorthand for a sequence
“eq,...,e,"), and the empty sequence is denoted by e.

In a class declaration class C inherits D {Cf; M N R},
C inherits from the superclass D (which must always be specified,
even if itis Object) all fields and methods. Then C introduces a list
of new fields C £ with their types (the fields of C are added to the

112

A = class C inherits C {Cf; M N R} classes
M &= Cm(CxX){returne;} methods
N == Cm(Cx); expected methods
R = redefCm(CX){returne;} redefining methods
e H x‘ e.f| e.m(e) | new C(e) ‘e e expressions
v = (11,1) wherel; C1, values
1 = new C(V):: € | new C(v) 1 1 run-time object list

Figure 1. CompObJ syntax; run-time syntax appears shaded. C
denotes list inclusion.

ones inherited by the superclasses and are assumed to have distinct
names). Constructors are considered implicit with a fixed syntax:
C(C f){super(f); this.f = £;}. The lists M, N and R contain the
methods which are declared by C. A method definition M specifies
the name, the signature and the body of the method, where the body
is a single return statement. Instead N and R concern the methods
which are declared as “required” (or “incomplete”). Namely:

e “expected” methods: the class declares only the signature of
these methods, while their bodies are expected to be provided
during object composition;

e “redefining” methods: although the body of these methods is
provided by the incomplete class, they are still incomplete since
the special variable next will be bound during object compo-
sition. We call these methods “redefining” because they will
be the active part in the redefinition when objects are com-
posed. We then call the corresponding overridden methods “re-
defined”. For instance, in a redefining method m we can access
the redefined version with next.m().

We assume that method names in M, N and R are all distinct.
However, the subclass can make “incomplete” a method which was
complete in the superclass and can give a complete implementation
for a method which was incomplete in the superclass.

As in FJ, we assume that the set of variables includes the spe-
cial variable this (implicitly bound in any method declaration),
which cannot be used as the name of a method’s formal parame-
ter. Analogously, the special variable next is implicitly bound in
redef methods: we can see next as the dynamic (and horizontal)
version of super (if super was added to FJ, it could safely coex-
ist with next). Since we treat this and next in method bodies as
ordinary variables, no special syntax for them is required.

If a class contains incomplete methods then it is considered it-
self as an incomplete class. Indeed, an incomplete class can be in-
stantiated, leading to an incomplete object: method invocation can-
not be performed on incomplete objects (the static typing will guar-
antee this property), while field selection can be safely performed
on them. A standard FJ (Java) class is represented by a class which
is completely defined, i.e., the sets N and R are empty, so instances
of complete classes are (complete) standard objects.

An object expression e can be composed at run time with an-
other object expression ey (object composition). We point out that
components of an object composition can be, in turn, the results
of other object compositions. Furthermore, the result of an object
composition can be still an incomplete object. When e; is com-
posed with ey, the latter can provide some of the methods required
by the former, independently from the class (type) of e; (of course,
the method signatures must match in well-typed expressions). Then
the expression e <+ e; represents a brand new object that consists
of the sub-object expressions e and ej; in particular, the objects
of these sub-expressions are not modified during the composition.
Thus objects retain their identity and state in all compositions they
are part of, while their behavior can be, partially or completely,
adapted in different compositions according to dynamic conditions.

113

required(C) = sign(N) Usign(R) U (required(D) — sign(M))

interface(C) = defined(C) U required(C)

Figure 2. defined, required and interface definitions.

Regarding class definitions, we observe a significant difference
of the present approach with respect to [6]. In [6] we had two
separate hierarchies, standard classes (i.e., basically Java classes
defined with the extends clause) and incomplete classes (with
the abstracts clause for the superclass); for instance, standard
classes could not inherit from incomplete classes. In CompObJ we
unify the two concepts, in order to enhance the flexibility of classes
and, in particular, of the objects. As a consequence, we allow
the object composition to produce both complete and incomplete
objects.

For the run-time representation of objects, we use lists of terms
new C(¥) (i.e., expressions that are passed to the constructor are
values, too). For instance, new C(¥) :: new D(T) :: € (& denotes the
empty list). The role of this representation will be clear in Section 4.
Intuitively, during method invocation, this list is scanned starting
from the leftmost object in search for the called method.

As in FJ, a class table CT is a mapping from class names to
class declarations. Then a program is a pair (CT,e) of a class
table (containing all the class definitions of the program) and an
expression e (the program’s main entry point). The class Object
has no members and its declaration does not appear in CT. We
assume that CT satisfies the usual sanity conditions [21]. In the
following, instead of writing CT(C) = class C ... we will simply
write class C Moreover, to simplify the notation, we will
always assume a fixed class table CT (as in FJ).

2.1 Types

In order to define the typing rules and the lookup functions, we
introduce some preliminary definitions. A signature set, denoted
by S, is a set of method signatures of the shapem: C — C. If

M=Cm (Cx){returne;}
represents the sequence of method definitions
Cim (C; X){returne;;} ... Cym, (Cy X){returne,;}

then sign(M) will denote the set of signatures m: C — C. The same
convention is used for redefining methods and for expected method
definitions (and their corresponding signatures). The auxiliary
functions (Figure 2) defined(C) and required(C) return the sig-
natures of the methods which are defined and required in class C,
respectively, by inspecting the signatures of its methods (and recur-
sively its superclass). In particular, the methods that are complete
are those defined in C and those defined in D that are not made in-
complete by C (i.e., sign(M) U (defined(D) — (sign(N) Usign(R))));
conversely, the incomplete methods are the incomplete methods of
C and those of D that are not defined in C (i.e., sign(N) Usign(R) U
(required(D) — sign(M))). The “interface” of a class is the set of all
the signatures of the class. We observe that if C inherits D then
interface(D) C interface(C).
The syntax of types, denoted by T, is the following:

T == C class type
(C/8) where S C interface(C) object type
S signature type

cac C1 <Cy C, <1Cs class CinheritsD{...}
CI <C3 C<D
T <:T T, <:T
T<:T 1 2 2 3
T <:T3
C<aD otype(Ti) =(C/S1) otype(T2) =(D/S;) 81 C8

T <:Tp

Figure 3. Subtyping rules.

The programmer can only write class names as types; this is con-
sistent with Java-like languages’ philosophy. On the other hand,
object types (C/S) are used only by the type system. An object type
consists of a class name C and of a signature set S which represents
the methods that are still required by the object (either expected
or redefining). Note that an object type is considered well-formed
only if the signatures of required methods are included in the inter-
face of C. Thus, an object is considered complete if its type is of the
shape (C/0). The signature type, represented by a signature set S,
is used by the type system only for handling the next variable (see
Section 3).

Then, given a type T, we define the auxiliary function otype
which returns an object type:

(C/required(C)) ifT=cC
otype(T)=¢ T if T is an object type
1 otherwise

Informally, the object type (C/S) represents the type of an object
which is either an instance of C (then S = required(C)) or an object
composition starting with an instance of C. In the latter case S is the
set of method signatures which are still required by the composed
object (provided that S C interface(C)). The role of object types
will be clear in the next sections.

2.2 Subtyping

The subclass relation <1 (defined for any class table CT) on class
types is induced by the inherits specification. However, in our
language, the inheritance relation inherits does not directly im-
ply subtyping, denoted by <:.

The subtype relation (Figure 3) is defined for each form of types
T except for signature types (since in the premises of the last rule
we use otype, which is undefined for signature types, we implicitly
forbid subtyping on signature types). Subtyping rules formalize the
situation when we can safely use an object of type (C/S;) when an
object of type (D/S;) is expected. Namely, we control that the for-
mer has less requirements than the latter, and that C is a subclass of
D. This means that our subtype relation still relies on a nominal sub-
class relation while adding some structural checks. The conjunction
of the two conditions imply that a subtype provides at least all the
defined methods and require less methods than the supertype. Note
that subtyping allows two objects to be compared independently
from the way they are generated: each of them can be a standard
object (an instance of a complete class), an instance of an incom-
plete class or a composed object (either complete or incomplete).
This is a major difference between CompODbJ and the type system
of [6] and enhances the flexibility of object compositions where a
component can be replaced by a “less incomplete” (possibly com-
plete) object during the evaluation.

2.3 Lookup functions

We define lookup functions (see Figure 4) to lookup fields and
methods from CT'; these functions are used in the typing rules and
in the operational semantics.

The lookup function fields(C) returns the sequence of the field
names, together with the corresponding types, for all the fields de-

fields(Object) = o fields((C/0)) = fields(C)

fields(D)=Dg

fields(C)=Dg,C*f
mtype(m,C) = mtype(m, interface(C))
miype(m,(C/...)) = mtype(m,C)

m:B—BeS
mtype(m,S) =B — B

Bm (BX){returne;} €M or redef Bm (BX){returne;} €R
mbody(m,C) = (%,e)

mbody(m,C) = e

Figure 4. Lookup functions.

clared in C and in its superclasses. The mtype(m, T) lookup function
(where m is the method name we are looking for, and T is the type
on which we are performing the lookup) returns the signature of m
by inspecting a signature set: when T is a class type C the signature
set is the interface of C (including the defined and required meth-
ods). The case for a signature type S is used for handling the next
variable, whose type is a signature set (see Section 3). Since mtype
is the only lookup function defined on a signature set, it is not pos-
sible to perform field selection on next. The lookup function for
method bodies, mbody, is similar to FJ but it is extended to deal
with incomplete classes (note that it returns an empty element e for
expected methods).

3. Typing

A type judgment of the form I" - e : T states that “e has type T in the
type environment I, A type environment is a finite mapping from
variables (including this and next) to types, written X : T. Again,
we use the sequence notation for abbreviating I' - ey : Ty,...,I'
e, :T,tolFe:T.

Typing rules are shown in Figure 5. Method selection is allowed
only on objects with a concrete type, where a type is concrete if it
has no method requirements or it is a signature set S (used for the
case of next as explained below). The key rule is (T-ComP) which
deals with object composition. In this new language (w.r.t. [6]) the
left object is not requested to be incomplete (it might be a complete
object as well), neither the right object to be complete nor to pro-
vide some of the methods requested by the left object. Moreover,
the right object can introduce new requirements, provided the sig-
natures of the required methods are in the interface of the class of
the left object; so the composition can also produce an object which
is not yet complete. Note that the final type is the type based on the
original class of the left object; we could have chosen the final type
to be a structural combination of the types of the objects taking part
in the composition, but our design choice is more suited to a nom-
inal setting. The (T-CoMP) rule also shows that the typing of <+
employs internally structural type checks, and we require no rela-
tion between the classes of the two objects; this is the key feature
of our approach, which is aimed to enhance the flexibility of object
composition.

The typing rules for methods and classes of FJ are adapted to
our context (we still use the override predicate of [21] to check

114

Predicates

jired(C) =0
required(C) =0 concrete({C/0)) concrete(S)
concrete(C)

mtype(m,D) = C — C implies C =B and C =B
override(m,D,B — B)

Expression typing
I'tx:T(x) (T-VAR)
TChe:T fields(T)=Cf (T-FIELD)
I'kFef;:C)
I'-e:T TIte:
miype(m,T) =B — B ? <:B ‘”"”ete(T) (T-INVK)
't em(e):B
fields(c)=Df TFe:T T<:D (T-NEW)
I'tnewC(e):C _
CFe T otype(T1) = (C/S1)
I'hex:T, onype(Tz) =(D/Sy) S Cinterface(C) (T-Comp)

't ej «+e:(C/(S) —defined(D))US;)

Method and Class typing

X: Ethis <C/@>|—e T T<:B
77777 override(m,D,B — B)
Bm(BX) {return e;} OKINC

(T-METHOD)

override(m,D,B — B)
Bm(Bx), 0K INC

(T-AMETHOD)

Sfrequired() X Ethis (C/0),next: St e:E E<:B
77777 override(m,D,B — B)
redef Bm (B x){return e;} OKINC
(T-RMETHOD)

NOKINC ROKINC

MOKINC

(T-CLASS)

Figure 5. Typing rules.

that the signature of a method is preserved by method overriding).
When typing a method and a redefining method in a (possibly
incomplete) class C (with rules (T-METHOD) and (T-RMETHOD),
respectively), we cannot simply assume C for the type of this,
since we would not be able to type any method invocation on this
in the methods of C (in fact, the rule (T-INVK) would fail since
concrete(C) will not hold if the class has some required methods).
Although we prohibit to invoke methods on incomplete objects,
it is still safe to accept method invocations on this inside an
incomplete class, since, at run time, this will be replaced by a
complete object; thus, we will assume (C/0) for the type of this.

In order to type a redef method, we also need to assume a type
for next when typing its body; it is safe to assume it has the sig-
nature set S = required(C), i.e., the signature set of the required
methods. This is consistent with the way next is bound in the op-
erational semantic rule for redefined method invocation (see Sec-
tion 4). As noted before, thanks to the way lookup functions are
defined (Figure 4), the only operation that is possible on next is
method invocation. Furthermore, the type of next, being a signa-
ture set, is always considered a concrete type, when typing method
invocations.

Rule (T-CLASS) basically checks all the methods are 0K. Note
that, although the syntax of types includes also signature sets, we
will use such types only to type next inside method bodies, and,
in a well-typed expression, next can appear only as the receiver
of a message: thus, expressions of the form next.f or e.m(next)
cannot be type checked. This is due to the fact that the subtyping is
not defined between a signature set and a class name or an object
type, and signature sets cannot be used by the programmer to write
types. In contrast, mtype, which is used in (T-INVK), is defined also
for signature sets.

4. Operational semantics

The operational semantics, shown in Figure 6, is defined by the re-
duction relation e — €, read “e reduces to e’ in one step”. The
standard reflexive and transitive closure of —», denoted by —*,
defines the reduction relation in many steps. We adopt a determin-
istic call-by-value semantics. The congruence rules formalize how
operators (method invocation, object creation, object composition

115

and field selection) are reduced only when all their subexpressions
are reduced to values (call-by-value).

The operational semantics is defined on annotated programs,
i.e., CompObJ programs where all expressions (including class
method bodies) are annotated using the annotation function 7.
Since this function relies on the static types, it is parametrized over
a type environment I". In the following we will use e and € also for
annotated expressions where not ambiguous.

Definition 4.1 (Annotation Function). The annotation of e with
respect to I, denoted by </ [[e]|r, is defined on the syntax of e, by
case analysis:

o Ax]r=x;

o d[ef]r = [e]r1;

o 7[en(d)]r = o[e]rmn(e[e]r)?®
mtype(m,T) =B — B;

¢ o/[[new C(&)]r = new C(</[[e]r);

* ey ++ ex]r = Z[le1]lr ++ #[ea]r-

if ' e:T and

Given a method definition Bm (B X){return e;}, in a class C,
the annotation of the method body e is defined as

'Qi[[e]]izﬁ,this:@/@)‘ _

Given a method redefinition redef Bm (BX){returne;}, ina
class C, the annotation of the method body e is defined as

%[[e]]ijﬁ.this:<C/0>,next:S where S = required(C).

This annotation will help the semantics in selecting the right
method definition according to the type of the method used during
the static type checking; in case of methods with the same name
but different signatures within a composed object, the annotation
will avoid invoking the wrong version (generating a run-time type
error).

To represent a run-time object we use a pair of lists of values of
the shape new C(v). Indeed, we use two lists because we need to
keep the original whole composed object so that we can bind this
correctly: the first list is used for searching for the method, while
the second list is the entire composed object. The rule for object
instantiation (R-NEW) generates lists of the shape new C(¥) ::
€. Rule (R-CoMP) composes two run-time objects by appending
the lists; note that this requires that the objects involved in the

Redefining set

redef(C) =R if class C inherits D {Cf; M N R}
Reduction
new C(Vv) — (newC(V) :: &,new C(V) &) (R-NEW)
(new C(¥) :: 1,new C(¥) :: 1) «—+ (1/,1') —
(newC(¥) :1:1 newC(¥) :1::1") (R-COMP)
lds(C)=Cf
fields(C) (R-FIELD)

(new C(¥) ::1,new C(V) :: 1).£; —> v;

mbody(m,C) = (%,eq) m & redef(C)

(new C(¥) : 1,1).m(w)®*® — [R < T, this < (new C(¥) = 1,1')]eg
(R-INVK)

mbody(m,C) = (X, e) m € redef(C)
(new C(¥) : 1,1").m(")BAB —
[X < T, this < (new C(v) 1,1'),next + (1,1")]eo
(R-RINVK)

mbody(m,C) = e

(new C(¥) : 1,1') m(@)P~® — (1,1')m(w)P®
(R-DINVK)

Congruence rules

e—e e—e
_— — —
ef—e.f em(8)P"® — &/ m(e)B B

/ /

e —e; &i—¢€

vo.m(¥,e;,8)" 78 — vo.m(7,e},8)P 78 new C(V,e;,8) — new C(7, ¢}, &)

e2*>e/2
/
ej<t+e—re <te

elﬂell
e]<—+v—>e/]e+v

Figure 6. Semantics of CompOblJ

composition consist of two identical lists (this is also required by
rule (R-FIELD)); as it will be clear in the following, objects of the
shape (1,1’) where 1 # 1’ appear only as message receivers and
they are produced only during method invocations; thus, the actual
values, returned by methods, passed to methods, used in object
compositions, etc., can only be of the shape (1,1).

The main idea of method invocation is to search for the method
definition in the (class of the) head of the first list using the mbody
lookup function. If this is found, by rule (R-INVK), then the method
body is executed; otherwise, by rule (R-DINVK), the search contin-
ues on the following element of the list (of course, in a well-typed
program, this search will succeed eventually). The following two
definitions show how to perform the binding of this in the method
body. The expression [X + @, this < (new C(¥) :: 1,1’)]e denotes
the expression obtained from e by replacing x; withuy, ..., x, with
u, and this with (new C(¥) :: 1,1’) using the substitution of Defi-
nition 4.3. For redefining methods we also replace next, using the
standard replacement (rule (R-RINVK)).

Definition 4.2 (findredef). Given a method name, an object list
and a method type we define:

1. findredef(m,e,B — B) = 0;

2. findredef(m,new C(¥) :: 1,B — B) =
new C(v) 1 ifm € redef(C) AB — B = mtype(m,C)
findredef(m,1,B — B) otherwise.

Definition 4.3 (this <= (1,1')). We define the substitution this <
(1,1") on expressions as follows:

1. [this < (1,1')]this = (1,1);
2. [this < (1,1')]x = x where x # this;
3. [this < (1,1)](this.m(e)B7B) =
let 1| = findredef(m,1’,B — B) in
{ (11,1').m([this < (1,1')])B B
(1,1).m([this < (1,1')]e)B B

(*)B*}B) —

f11#0
otherwise;
4. [this < (1,1)](e.

([this < (1,1)]e).m([this < (1,1/)]8)B 7B where e # this;
5. [this < (1,1/)](this. f) =(1,1).f;
6. [this < (1,1')](e.f) = [thls < (1,1')]e).f where e # this;
7. [th::Ls = (1,1:)](new C(e)) =new C([this < (1,1')]e);
8 [this < (1,1")](e; ++ e3) =

([this < (1,1")]e1) ++ ([this < (1,1")]ey).

Field selections in a method body expect to deal with an object
of the class where the field is defined (or of a subclass). Thus, we
must substitute this with the first list that is where the invoked
method is defined (case 5). Indeed, the first list implements the
scope of this inside a method body. Another crucial case is when
this occurs as a right-hand side expression, e.g., when passing
this as a method argument; in this case the natural meaning is to
refer to the current object “up to now” in the list, and the second
list is useless in this context, thus we perform the substitution
[this < (1,1')]this = (1,1) (case 1). This is also consistent
with reduction rule (R-COMP), where we require that the objects
consist of two identical lists (indeed, we can use this in an object
composition, e.g., e <+ this).

Concerning method invocation, we must take into consideration
possible ambiguities due to method name clashes. Suppose we
have an incomplete class A that requires a method m and defines
a method n. An instance of A can be composed with an object that
provides m, say an object of class B that also defines a method n,
but with a different signature (see the stream example in Section 5).
When we invoke m on the composed object, we actually execute the
definition of m in B; if this method then invokes n, the definition
of n in B must be executed (executing the version in A would
not be sound). This is consistent with the typing that has checked
the invocation of n in B.m using the signature of B.n. On the
contrary, if the definition of n has the same signature as in A,
then we must execute the version of A (according to the semantics
of delegation) only if in A n is redefining. This method selection
strategy is implemented by point 3 of Definition 4.3 by relying
on the function findredef (Definition 4.2) which uses the static
annotation: given a method name, an object list and a method
signature, findredef(m,new C(¥) :: 1,B — B) searches for the object
in the list that redefines m (in particular, it checks whether in the
class of the head of the list m is redefining, otherwise it performs
a recursive lookup in the tail of the list). If the search succeeds,
then we replace this with the sublist returned by findredef (this
corresponds to the delegation mechanism of replacing this with
the original sender); otherwise, we replace this with the head of
the scanned list, since that method was not intended to be redefined.

The key point of our approach is that, when objects are com-
posed, the resulting object consists of a list of sub-objects; in par-
ticular these sub-objects are not modified. Thus, the state and the
identity of the objects within an object composition never change.
Each object composition creates indeed a brand new object: for in-
stance, each object composition would get a new object identifier in
an imperative model. Thus, this design choice would scale well also
to an imperative setting, since this mechanism will assure that there
will not be problems when an object is pointed to by references in
different parts of the program.

116

For proving that CompObl is type safe, we first prove that well-
typedness is preserved under reduction and then that well-typed
expressions cannot get stuck due to a message-not-understood error
or message-ambiguous error. Here we only state the two main
theorems (the proofs are sketched in a document available online
athttp://www.dsi.unifi.it/ bettini/compobj.pdf)

Theorem 4.4 (Type Preservation). If - e: T and e —> €’ then
't e : T for some T <:T.

Theorem 4.5 (Progress). Let e be a closed run-time expression. If
F e: T, for some T, and e — & for some €', then either ¢’ is a
final value, or e’ can be reduced.

5. Programming Examples

In this section, we show how incomplete objects and object com-
position can be used to implement some recurrent programming
scenarios. For simplicity, we will use here a richer Java-like syn-
tax (and consider all methods as public) and we will denote object
composition operation with <-. In [6] we presented the example
of graphical widgets to show how incomplete objects and object
compositions can be used to implement scenarios where usually the
design pattern command [17] is used. That example can be straight-
forwardly transposed into this new language. The examples shown
here are only sketched, i.e., we will not always show all the fields of
the classes and the complete implementation of the methods, since
we concentrate on the parts which are relevant to object compo-
sition functionalities of CompOblJ; we observe that the scenarios
considered here (as well as the ones we considered in [6]) are typi-
cal case studies considered in the literature in the context of object
composition and delegation (we refer to Section 6).

Here, we will re-implement the stream example of [6] and show
how the new object composition mechanism is more flexible. Typ-
ically, stream libraries are implemented using the pattern deco-
rator [17]. A stream class provides the basic functionalities for
reading and writing bytes; then there are several specializations of
streams (e.g., streams for compression, for buffering, etc.) that are
composed in a chain of streams. The actual composition is done at
run time.

Although this pattern is useful in practice, it still requires man-
ual programming. With object composition and redefining methods
we can easily implement a stream library, as sketched in Listing 1:
the specific stream specializations rely on the methods provided
during object composition (using next) and redefine them. In or-
der to show how delegation is implemented in our language, we in-
troduced also the method readBuffer both in CompressStream
and in BufferedStream. These two methods, in spite of having
the same name, are completely unrelated (we also used different
signatures). The operational semantics (Section 4) guarantees that
the right implementation will be invoked, depending on the context
in which this method is invoked; for instance, the method read in
BufferedStream invokes readBuffer, and at run time the ver-
sion defined in BufferedStream will be selected (thus run-time
type errors are avoided). The same holds when readBuffer is in-
voked in the method uncompress in CompressStream: the ver-
sion of readBuffer in CompressStream will be selected at run
time.

This example also gives an insight of the programming style
which is induced by the design principles of our language: File-
Stream is not modeled as an incomplete class since it can be
implemented with all the functionalities. Similarly, we could have
a SocketStream as a complete class for writing to/reading from
the network. On the contrary, CompressStream and Buffered-
Stream rely on another stream and thus they are incomplete classes
(and their methods are redefining). It is then clear that Compress—
Stream and BufferedStream can be re-used independently from

117

class Stream {
void write(byte[] b);
byte[] read();

class FileStream inherits Stream {
public FileStream(String filename) { ... }
void write(byte[]b) { ... }
byte[] read() { ... }

class CompressStream inherits Stream {
redef void write(byte[] b) { next.write(compress(b)); }
redef byte[] read() { return uncompress(next.read()); }
byte[] compress(byte[] b) {...}
byte[] uncompress(byte[] b) { ... readBuffer(size, b); ... }
void readBuffer(int len, byte[] b) {...}

}

class BufferedStream inherits Stream {
Buffer buff;
redef void write(byte[] b) {
if (buff.isFull()) next.write(b);
else buff.append(b);

redef byte[] read() {
if (buff.size() > 0) return readBuffer();

}
byte[] readBuffer() {...}

Listing 1: The implementation of streams using redefining meth-
ods.

the actual stream implementation; on the other hand, a File-
Stream can be “decorated” with further functionalities, but it could
also be used as it is.

Here it is a possible object composition using the classes in
Listing 1:

new CompressStream() <-
(new BufferedStream() <- new FileStream("foo.txt"));

We build a compressed-buffered stream starting from a file stream.
Implementing this scenario with the decorator pattern would re-
quire more programming, and the relations among the classes and
objects would not be clear.

Differently from our previous work [6], in this language object
composition can also generate an incomplete object, and we can
compose two incomplete objects. Thus, the composition could also
be written as follows (note the parenthesis):

(new CompressStream() <- new BufferedStream())
<- new FileStream("foo.txt");

This means that the construction of “decorations” can also be
handled in another method of the program, say buildDecora-
tions (thus exploiting modular programming) and the resulting
incomplete objects can then be assembled later in the program in
order to build a complete object:

buildDecorations() <- new FileStream("foo.txt");

We can then reuse the same decorations (i.e., the composed
incomplete object) also for other stream compositions, e.g., with
SocketStream.

The ability of object composition to create also incomplete ob-
jects can be useful also in other scenarios; for instance, we might
write an EncryptStream which redefines write and read and
requires the methods encrypt and decrypt which will then be

class Treelterator {
void doAll() {
firstElem();
while (lisDone()) { }
action();
nextElem();

class TextJustifier {
void action() { / implemented

void firstElem() { ... }
void nextElem() { ... }
boolean isDone() { ... }
void action(); // required

}

Listing 2: The implementation of iterator and text justifier.

provided by an object implementing the actual encryption algo-
rithm, e.g., RSAEncrypter, DESEncrypter, etc. Composing an
incomplete object EncryptStream and a complete object RSAEn-
crypter still produces an incomplete object (due to the redefining
methods write and read).

We now show how to implement the programming scenario
of iterator and text justifier (which can be seen as an example of
pattern strategy [17]) borrowed from [27]. Suppose we want to
implement the text justification in a document editor, which will
have to iterate over the document structure. In Java we could make
TextJustifier a subclass of TreeIterator so that it imple-
ments the abstract method action (which implements the actual
strategy); however, this would make TextJustifier a subtype of
Treelterator which is an unwanted side-effect (and from the de-
sign point of view it might be wrong: the methods of TreeItera-
tor would pollute the interface of Text Justifier). Alternatively,
we could insert a field in TreeIterator, say actionImpl, and
make it forward the method action to actionImpl. Besides this
breaking the delegation [18], it would require actionImpl to be
declared with some interface containing action, and thus, again,
TextJustifier would require to implement that interface. Note
that using anonymous inner-classes for creating a “proxy” that im-
plements an interface without polluting the outer class interface
would not solve the problem of broken delegation either.

In our language we can define the two classes as in Listing 2,
without any form of relation or coupling between the them. We be-
lieve our solution is simpler than the approaches presented in [27]
and, in general, than a wrapper solution (such as, e.g., [7, 10]). Thus
we can compose two instances as follows:

new Treelterator() <- new TextJustifier();

Note that this way the two classes belong to two separate hierar-
chies, and their interfaces and structure are not polluted with un-
wanted methods.

Following the scenario [27], we could also implement different
iteration strategies, e.g., for pre-order and post-order visit. How-
ever, differently from [27], we could also do this without changing
Treelterator itself, by defining the following two incomplete
classes which use redefining methods:

class PreOrder {
redef void firstElem() { ... }
redef void nextElem() { ... }

}

Again, note that there is no subclass relations between these classes
and TreeIterator. Then we can build the iteration functionality
separately, to be finally composed with the text justification func-
tionality:

class PostOrder {
redef void firstElem() { ... }
redef void nextElem() { ... }

iteration = (new PreOrder() <- new Treelterator());
iteration <- new TextJustifier();

Thanks to delegation, when the TreeIterator object will in-
voke nextElem the redefining method in PreOrder will be se-
lected, and when it will invoke action, the method defined in Tex-
tJustifier will be selected.

In the above examples the fact that no specific relation is needed
in the class design highlights one of the important features of
our approach: the object composition can model variations of the
object behavior which might have not been anticipated in the class
hierarchy.

It would be easy to implement other scenarios with our linguis-
tic constructs, for instance, the adapter pattern [17], which are typ-
ically implemented with object composition; differently from man-
ual implementations, adapters implemented with our object compo-
sition would benefit from delegation. Similarly, also logging func-
tionalities (a typical example of aspects, see, e.g., [12]) could be
straightforwardly implemented with object composition, redefining
methods and delegation.

As a final note, we observe that the main capabilities of Com-
pObJ could be emulated by a manual implementation of patterns.
However, our aim was to model these capabilities as linguistic con-
structs (with a type system and a semantics, proved sound) and to
integrate them in the static type system of mainstream languages.
With incomplete objects, we tried to shorten the distance between
the language features and the design patterns, so that their imple-
mentation can be smoother [8] and possibly more efficient [9].

6. Related Work

There are some similarities between our incomplete objects and
approaches based on delegation [24, 30], which rely on object
composition and method delegation as a more flexible and run-time
version of class inheritance and method overriding: every object
has a list of parent objects and when an object cannot answer a
message it forwards it to its parents until there is an object that
can process the message. However, a drawback of these approaches
is that run-time type errors (“message-not-understood”) can arise
when no delegates are able to process the forwarded message [31].
For this reason, some linguistic approaches were studied to deal
with delegation and type safety properties.

In [22] delegation is presented in the model of the language Dar-
win; however, in [22] the type of the parent object must be a de-
clared class and this limits the flexibility of dynamic composition,
while in our approach there is no implicit parent and required meth-
ods can be provided by any object, independently from its class.

In [26] a model based on delegation layers is presented where
all the features that are typical of class-based languages (inheri-
tance, delegation, late binding and subtype polymorphism) auto-
matically apply to sets of collaborating classes and objects. In [26]
there is a high flexibility concerning the hierarchy of involved in-
stances since delegation layers allow expressing configurations that
cannot be modeled with delegation alone. On the other hand, this
approach results in a more complex semantics concerning objects
interaction/relation.

In [27] new abstractions for object references and composition
are introduced, which provide explicit linguistic support for com-
bining different composition properties on-demand. The model is
statically typed and allows the programmer to express several kinds
of composition semantics in the interval between object composi-
tion and inheritance. Also in this case, the several linguistic con-
structs can show more complex semantics concerning objects in-
teraction/relation. Note that in our approach we also achieve trans-
parent redirection [27], thus avoiding the before mentioned self

118

problem [24] and broken delegation [18]. It would be interesting
to investigate whether with our small set of linguistic mechanisms
we can encode the several mechanisms of [27].

Incomplete objects, as a language construct, are more general-
purpose than wrappers (see, e.g., [7, 10]) and, indeed, wrappers
could be actually implemented through incomplete objects. An-
other form of wrapping of methods is the one offered by the del-
egates of C#, i.e., objects pointing to one method or to a set of
methods, that will be executed when invoked appropriately on the
delegate. Delegates can be seen as complementary to incomplete
objects, which implement a different form of reuse, allowing to
customize a prototype (i.e., an incomplete object) in more than one
way via object composition. A further construct of C# that deals
with some form of incompleteness is the one of partial classes,
that makes it possible to subdivide a class definition among two
or more files. However, this mechanism is a static one, while our
object composition is dynamic.

Objective-C provides categories, a run-time mechanism for
modifying existing code: the programmer can place groups of re-
lated methods into a category and can add the methods within a
category to a class at run time. The main difference with our in-
complete object mechanism is that categories act at the class level,
while our linguistic feature acts at the object level.

Traits [14] are composable units containing only methods, and
they were proposed as an add-on to traditional class-based inher-
itance for a higher degree of code reuse. Incomplete objects can
be seen as a tool for rapid prototyping, that is, for adding methods
on the fly to already existing objects. Traits and incomplete objects
share an important feature, composition, which permits composing
sets of methods “at the right level”, for instance not too high in
a hierarchy for traits, and “when needed” for incomplete objects.
The main difference is that traits are a compile-time feature, while
incomplete objects are composed at run time.

There are some relations between aspects [12] and our incom-
plete objects. Both are used to combine features taken from differ-
ent sources. In the aspect case, the main idea is to factorize into
aspects some cross-cutting functions that are needed globally by a
library, instead of duplicating and scattering them into the business
code. In our case, we consider objects as building blocks that can
be used to combine features on the fly, in order to obtain and ex-
periment with multi-function objects whenever it is desired. Thus,
the role of incomplete objects is orthogonal to the one of aspects,
because the former play a local role, while the latter a more global
one.

In [1] a general model for object composition is proposed,
which is based on the design of classes in an aspect-oriented style.
The authors do not formalize their model within a calculus, but
the main feature is to compose dynamically the overall behavior
of an object from the multiple “aspects” that abstract the variant
behavior [2]. The main difference with respect to our language is
that for them the run-time behavior is codified in aspects, while we
internalize it in a Java-like setting by exploiting incomplete classes
and object composition.

The language gbeta [15] supports a mechanism called “object
metamorphosis” to specialize dynamically an existing object: a
class is applied to it as a constraint and the object becomes an in-
stance of that class. The main difference between the gbeta special-
izing objects and our incomplete objects is that the former maintain
the object identity, while the latter are used to create dynamically
new objects which are not instances of any classes present in the
program. The language gbeta also supports dynamic class compo-
sition [25] while in our language we act on object composition.

Roles [19, 23] are a conceptual abstraction that can be used in
object-oriented systems to implement specific entities within a do-
main. Both roles and incomplete objects have an inherent compo-

119

sitional nature, but the two approaches are rather different both for
features and for intention. First of all, once objects are composed,
they cannot be de-composed (although we might consider studying
such an operation and how this affects the static type system). On
the contrary, roles can be attached to base objects and detached;
in particular, upon removal, a role is also destroyed. This is another
important difference with respect to our object composition: objects
in our language keep their own identity and life cycle (and they can
be used in many object composition), while roles can be attached
to one base object only and they “live” only when they are part of
such a base object. Moreover, role definitions also specify the class
of their base objects, and this couples them to these classes, while
in our approach the type of objects in composition is not known in
advance.

In [32] linguistic abstractions for component-oriented program-
ming are added on top of FJ: while this notion of component in-
spired our view of objects, in [32] components are distinct linguis-
tic constructs from the notion of objects as class instances. More-
over, type safety in [32] is guaranteed only at the cost of a number
of syntactic restrictions.

In [20] the language MorphJ offers the mechanism of nested
patterns to implement a form of “class morphing”, which enables
safe static reflection over members of a type, in order to generate
new classes in a meta-programming style. Generic classes are used
to abstract over the structure of methods in other classes and they
can be type checked separately from the classes that instantiate
it, in a type safe way. The main point of similarity between [20]
and our approach is the aim of integrating abstraction linguistic
constructs into mainstream languages with static typing. However,
such constructs are at the class level in MorphJ, whereas they work
dynamically at object composition level in CompObl.

7. Conclusions

We presented a core language CompOblJ with incomplete objects,
object composition and delegation, by integrating a mechanism of
object composition into a statically typed class-based language. We
achieve the flexibility of the object composition typical of object-
based language, while retaining the safety of Java-like languages.
The underlying idea of CompObl] is to transpose at run time the
features of abstract classes in standard class-based languages: if C
is an abstract class in a Java-like language, then a variable ¢ can
be safely declared with type C: since the type system prohibits to
instantiate abstract classes, at run time the variable ¢ will only refer
to subclasses of C which are not abstract (i.e., they implement all
the abstract methods of C). Analogously, in CompObJ, if C is an
“incomplete” class, we can safely instantiate C (i.e., an incomplete
object): method invocation cannot be performed on objects which
are incomplete (the type system prevents this); however, that in-
stance can be used in object compositions, and when a composed
object is complete (all requirements are fulfilled) it can be used for
method invocations.

The functionalities provided by the dynamic method redefini-
tion, together with the delegation mechanism, further unleash the
flexibility of object composition. By representing objects as lists of
subobjects, we can explicitly deal with the “scope” of a method in-
vocation. Our solution avoids possible name clashing and acciden-
tal overrides, and it is much more implementation-oriented than the
dictionaries of [28] and simpler than the one of [3].

In [6] we showed how consultation can coexist with delegation
in the context of incomplete objects. Consultation is not only useful
as a preliminary study for appreciating how the composition mech-
anism can be integrated in a Java-like, class-based setting but it is
interesting in its own, since it provides the programmer with more
control on method invocation. The same technique can be applied

also to CompODblJ to provide the programmer with choice between
consultation and delegation.

In [4] we presented I-Java, an extension of the Java language
with a very simple notion of incomplete objects and object com-
position (with consultation mechanism only). We implemented a
preprocessor that, given a program that uses our language exten-
sion, produces standard Java code (the preprocessor is available at
http://i-java.sf.net). The integration in Java of incomplete
objects with delegation according to the presented approach is cur-
rently under development and the I-Java implementation will be
the starting point. The code generated by I-Java does not contain
much overhead with respect to manual implementations (e.g., of
patterns); in particular, method forwarding for incomplete methods
would be present also in standard design pattern implementations.
The only additional overhead is the one due to myThis, a special
variable that is used to simulate the binding of this and to achieve
the flexibility of incomplete objects that can be composed with ob-
jects independently from their types. myThis is also used to ac-
cess the head of the list representing a composed object (again if
these capabilities were to be implemented manually, the overhead
would be the same). When implementing CompObJ we think we
can reuse this special variable to implement the findredef function,
i.e., to achieve the delegation mechanism for method invocation.
Again, we believe that this additional overhead would be the same
as the one of a manual implementation to achieve the semantics of
delegation.

The present proposal seems to be a useful approach to deal with
the problem of dynamic reconfiguration of mobile code [5] both in
the context of service oriented programming and in web services;
in these scenarios, mechanisms enabling service composition and
reconfiguration, based on types, could be implemented through
incomplete objects. In this direction, we plan to investigate how
our approach to object composition can be exploited in calculi that
incorporate session types in an object-oriented framework, such
as [13].

Finally, interaction of our linguistic constructs with Java gener-
ics can be an interesting future research subject allowing generic
class instances to take part to object compositions.

Acknowledgments We warmly thank Viviana Bono for her in-
valuable contribution to the development of the present approach.
Our thanks to Tina Fasulo for the helpful insights she provided
when working on her master thesis. Finally, we thank the anony-
mous referees for their suggestions for improving the presentation.

References

[1] C. Babu and D. Janakiram. Method Driven Model: A Unified Model
for an Object Composition Language. ACM SIGPLAN Notices,
39(8):61-71, 2004.

[2] C. Babu, W. Jaques, and D. Janakiram. DynOCoLa: Enabling Dy-
namic Composition of Object Behaviour. In RAM-SE, 2005.

[3] L. Bettini, V. Bono, and S. Likavec. Safe and Flexible Objects with
Subtyping. Journal of Object Technology, 10(4):5-29, 2005.

[4] L. Bettini, V. Bono, and E. Turin. I-Java: an extension of Java with
incomplete objects and object composition. In Software Composition,
volume 5634 of LNCS, pages 27-44. Springer, 2009.

[5] L. Bettini, V. Bono, and B. Venneri. MoMi: a calculus for mobile
mixins. Acta Informatica, 42(2-3):143-190, 2005.

[6] L. Bettini, V. Bono, and B. Venneri. Delegation by object composition.
Science of Computer Programming, 76(11):992-1014, 2011.

[7] L. Bettini, S. Capecchi, and E. Giachino. Featherweight Wrap Java:
wrapping objects and methods. Journal of Object Technology, 7(2):5—
29, 2008.

[8] J. Bishop. Language features meet design patterns: raising the abstrac-
tion bar. In ROA, pages 1-7. ACM, 2008.

[9] J. Bishop and R. N. Horspool. On the Efficiency of Design Patterns
Implemented in C# 3.0. In TOOLS, volume 11 of LNBIP, pages 356—
371. Springer, 2008.

[10] M. Biichi and W. Weck. Generic wrappers. In ECOOP, volume 1850
of LNCS, pages 201-225. Springer, 2000.

[11] C. Chambers. Object-Oriented Multi-Methods in Cecil. In ECOOP,
volume 615 of LNCS, pages 33-56. Springer, 1992.

[12] D. Crawford. Communications of the ACM archive - Special Issue on
Aspect-Oriented Programming, volume 44. ACM, 2001.

[13] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and
S. Drossopoulou. Session Types for Object-Oriented Languages. In
ECOOP, volume 4067 of LNCS, pages 328-352. Springer, 2006.

[14] S. Ducasse, O. Nierstrasz, N. Schirli, R. Wuyts, and A. Black. Traits:
A mechanism for fine-grained reuse. ACM TOPLAS, 28(2):331-388,
2006.

[15] E. Ernst. gbeta — a Language with Virtual Attributes, Block Structure,
and Propagating, Dynamic Inheritance. PhD thesis, Department of
Computer Science, University of Arhus, Denmark, 1999.

[16] K. Fisher and J. C. Mitchell. A Delegation-based Object Calculus
with Subtyping. In FCT, volume 965 of LNCS, pages 42—61. Springer,
1995.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[18] W. Harrison, H. Ossher, and P. Tarr. Using Delegation for Software
and Subject Composition. Technical Report RC 20946, IBM Thomas
J. Watson Research Center, 1997.

[19] S. Herrmann. A precise model for contextual roles: The programming
language ObjectTeams/Java. Applied Ontology, 2(2):181-207, 2007.

[20] S.S. Huang and Y. Smaragdakis. Expressive and safe static reflection
with Morphl]. In PLDI, pages 79-89. ACM, 2008.

[21] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM TOPLAS, 23(3):396-450, 2001.

[22] G. Kniesel. Type-Safe Delegation for Run-Time Component Adap-
tation. In ECOOP, volume 1628 of LNCS, pages 351-366. Springer,
1999.

[23] B. B. Kiristensen and K. @sterbye. Roles: Conceptual abstraction
theory and practical language issues. Theory and Practice of Object
Sytems, 2(3):143-160, 1996.

[24] H. Lieberman. Using prototypical objects to implement shared behav-
ior in object oriented systems. ACM SIGPLAN Notices, 21(11):214—
214, 1986.

[25] A. B. Nielsen and E. Ernst. Optimizing Dynamic Class Composition
in a Statically Typed Language. In TOOLS, volume 11 of LNBIP,
pages 161-177. Springer, 2008.

[26] K. Ostermann. Dynamically composable collaborations with dele-
gation layers. In ECOOP, volume 2374 of LNCS, pages 89-110.
Springer, 2002.

[27] K. Ostermann and M. Mezini. Object-Oriented Composition Untan-
gled. In OOPSLA, pages 283-299. ACM, 2001.

[28] J. Riecke and C. Stone. Privacy via Subsumption. Information and
Computation, 172:2-28, 2002.

[29] A. Taivalsaari. On the notion of inheritance. ACM Computing Surveys,
28(3):438-479, Sept. 1996.

[30] D. Ungar and R. B. Smith. Self: The power of simplicity. ACM SIG-
PLAN Notices, 22(12):227-242, 1987.

[31] J. Viega, B. Tutt, and R. Behrends. Automated Delegation is a Viable
Alternative to Multiple Inheritance in Class Based Languages. Tech-
nical Report CS-98-03, UVa Computer Science, 1998.

[32] M. Zenger. Type-Safe Prototype-Based Component Evolution. In
ECOOP, volume 2374 of LNCS, pages 470-497. Springer, 2002.

120

