skip to main content
10.1145/2093973.2094006acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Median trajectories using well-visited regions and shortest paths

Published: 01 November 2011 Publication History

Abstract

For a set of "similar" trajectories, a median trajectory is a trajectory that is most like the trajectories in the set, but it need not be a trajectory from the set itself. A recent method composed a median from parts of the set of trajectories, using ideas from homotopy to decide which parts to use. That method has two drawbacks. Firstly, it requires a significant subset of the trajectories to be homotopic, and such a subset may not always exist. Secondly, it sometimes misses relevant parts of trajectories because homotopy does not characterize the shape of the trajectories in all situations. In this paper we present a new approach to overcome these two drawbacks, leading to majority medians. We give results from extensive experiments, which indicate that majority medians are indeed better than homotopic medians.

References

[1]
P. K. Agarwal, M. de Berg, J. Gao, L. J. Guibas, and S. Har-Peled. Staying in the middle: exact and approximate medians in R1 and R2 for moving points. In Proc. 17th Canad. Conf. Comput. Geom., 43--46, 2005.
[2]
P. K. Agarwal, J. Gao, L. J. Guibas. Kinetic Medians and kd-Trees. In Proc. 10th Europ. Symp. Alg., LNCS 2461: 5--16, 2002.
[3]
P. K. Agarwal, L. J. Guibas, H. Edelsbrunner, J. Erickson, M. Isard, S. Har-Peled, J. Hershberger, C. S. Jensen, L. E. Kavraki, P. Koehl, M. C. Lin, D. Manocha, D. N. Metaxas, B. Mirtich, D. M. Mount, S. Muthukrishnan, D. K. Pai, E. Sacks, J. Snoeyink, S. Suri, O. Wolfson. Algorithmic issues in modeling motion. ACM Comput. Surveys 34(4): 550--572, 2002.
[4]
N. Amenta, M. Bern, D. Eppstein, and S.-H. Teng. Regression depth and center points. Discr. & Comput. Geometry 23(3): 305--323, 2000.
[5]
G. Andrienko and N. Andrienko. Spatio-temporal aggregation for visual analysis of movements. In IEEE VAST, 51--58, 2008.
[6]
G. Andrienko and N. Andrienko. A visual analytics approach to exploration of large amounts of movement data. In VISUAL 2008, 1--4, 2008.
[7]
K. Buchin, M. Buchin, M. van Kreveld, M. Löffler, R. I. Silveira, C. Wenk, and L. Wiratma. Median trajectories. In Proc. 18th Europ. Symp. Alg., LNCS 6346: 90--105, 2010.
[8]
S. Durocher and D. G. Kirkpatrick. Bounded-velocity approximation of mobile Euclidean 2-centres. Int. J. Comput. Geom. Appl. 18(3): 161--183, 2008.
[9]
S. Durocher and D. G. Kirkpatrick. The Steiner centre of a set of points: stability, eccentricity, and applications to mobile facility location. Int. J. Comput. Geom. Appl. 16(4): 345--372, 2006.
[10]
S. Gaffney and P. Smyth. Trajectory clustering with mixtures of regression models. In Proc. 5th Int. Conf. on Knowledge Discovery and Data Mining (KDD'99), 63--72, 1999.
[11]
J. Gudmundsson, P. Laube, and T. Wolle. Movement patterns in spatio-temporal data. In Encyclopedia of GIS, S. Shekhar and H. Xiong (eds.), Springer, Heidelberg, 726--732, 2008.
[12]
L. J. Guibas. Kinetic data structures: a state of the art report. In Proc. 3rd Workshop Alg. Found. Robotics, pages 191--209, 1998.
[13]
L. J. Guibas. Modeling Motion. Chapter 50 in Handbook of Discrete and Computational Geometry, J. Goodman and J. O'Rourke (eds.), CRC Press, second edition, 2004.
[14]
J.-G. Lee, J. Han, X. Li, and H. Gonzalez. TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering. In PVLDB '08, 1081--1094, 2008.
[15]
J. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-and-group framework. In Proc. 2007 ACM SIGMOD, 593--604, 2007.
[16]
M. Nanni and D. Pedreschi. Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst., 27:285--289, 2006.
[17]
N. Willems, H. van de Wetering, and J. J. van Wijk. Visualization of vessel movements. Eurographics/IEEE-VGTC Symp. on Visualization, 28:959--966, 2009.
[18]
L. Wiratma. Following the Majority: A New Algorithm for Computing a Median Trajectory. Master's Thesis INF/SCR-09-103, Department of Information and Computing Sciences, Utrecht University, 2010. http://people.cs.uu.nl/marc/SCR-09-103.pdf

Cited By

View all
  • (2016)Polygon consensusProceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/2996913.2996951(1-4)Online publication date: 31-Oct-2016
  • (2016)Virtual Running of GPS Vehicles for Trajectory AnalysisProceedings of the 10th International Conference on Ubiquitous Information Management and Communication10.1145/2857546.2857627(1-8)Online publication date: 4-Jan-2016
  • (2016)Virtual running of vehicle trajectories for automatic map generationProceedings of the 31st Annual ACM Symposium on Applied Computing10.1145/2851613.2851712(572-579)Online publication date: 4-Apr-2016
  • Show More Cited By

Index Terms

  1. Median trajectories using well-visited regions and shortest paths

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GIS '11: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
    November 2011
    559 pages
    ISBN:9781450310314
    DOI:10.1145/2093973
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 November 2011

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. geometric algorithms
    2. trajectory analysis

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    GIS '11
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 257 of 1,238 submissions, 21%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2016)Polygon consensusProceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/2996913.2996951(1-4)Online publication date: 31-Oct-2016
    • (2016)Virtual Running of GPS Vehicles for Trajectory AnalysisProceedings of the 10th International Conference on Ubiquitous Information Management and Communication10.1145/2857546.2857627(1-8)Online publication date: 4-Jan-2016
    • (2016)Virtual running of vehicle trajectories for automatic map generationProceedings of the 31st Annual ACM Symposium on Applied Computing10.1145/2851613.2851712(572-579)Online publication date: 4-Apr-2016
    • (2015)Moving Point Density Estimation Algorithm Based on a Generated Bayesian PriorISPRS International Journal of Geo-Information10.3390/ijgi40205154:2(515-534)Online publication date: 7-Apr-2015
    • (2015)LiDAR-based pedestrian-flow analysis for crowdedness equalizationProceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/2820783.2820805(1-10)Online publication date: 3-Nov-2015
    • (2015)International standard “OGC® moving features” to address “4Vs” on locational bigdataProceedings of the 2015 IEEE International Conference on Big Data (Big Data)10.1109/BigData.2015.7363975(1958-1966)Online publication date: 29-Oct-2015
    • (2014)Computing Consensus CurvesProceedings of the 13th International Symposium on Experimental Algorithms - Volume 850410.1007/978-3-319-07959-2_19(223-234)Online publication date: 29-Jun-2014
    • (2013)Pathlet learning for compressing and planning trajectoriesProceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/2525314.2525443(392-395)Online publication date: 5-Nov-2013

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media