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ABSTRACT

Consumers all over the world are increasingly using their
smartphones on the go and expect consistent, high quality
connectivity at all times. A key network primitive that en-
ables continuous connectivity in cellular networks is handoff.
Although handoffs are necessary for mobile devices to main-
tain connectivity, they can also cause short-term disruptions
in application performance. Thus, applications could bene-
fit from the ability to predict impending handoffs with rea-
sonable accuracy, and modify their behavior to counter the
performance degradation that accompanies handoffs. In this
paper, we study whether attributes relating to the cellular
network conditions measured at handsets can accurately pre-
dict handoffs. In particular, we develop a machine learning
framework to predict handoffs in the near future. An evalua-
tion on handoff traces from a large US cellular carrier shows
that our approach can achieve 80% accuracy — 27% better
than a naive predictor.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Local and
Wide-Area Networks

General Terms

Measurement, Management

Keywords

handoff, prediction, mobility, UMTS, 3G, wireless, measure-
ment

1. INTRODUCTION

Cellular data networks have recently seen an explosion in
their usage due to the widespread deployment of 3G tech-
nologies and the rapid proliferation of smartphones. People
are increasingly using their smartphones on the go and ex-
pect always-on, high quality connectivity at all times.
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A key network primitive that enables continuous connec-
tivity in cellular networks is handoff, or the transfer of a
device’s connection from one cell sector to another. Al-
though handoffs are necessary for mobile devices to main-
tain connectivity, a recent study [14] showed that handoffs
generally cause short-term disruptions in application per-
formance. Similarly, simulation studies [4] have shown that
handoffs could degrade performance of real-time applica-
tions such as VolIP. Moreover, some networks are prone to
making handoff decisions suboptimally [14], incurring over-
head for both applications and the infrastructure when per-
forming unnecessary handoffs.

Given the negative impact of handoffs on application per-
formance, applications could benefit from the ability to pre-
dict impending handoffs with reasonable accuracy, and mod-
ify their behavior to counter the performance degradation
that accompanies handoffs. For example, handoff prediction
can enable the adaptive management of playback buffers
by increasing the buffer size when a handoff is expected.
These predictions could be made available to the applica-
tions through an API. In addition, the network infrastruc-
ture could utilize the ability to predict conditions that are
likely to require handoffs to improve handoff decisions and
resource allocation. However, predicting future handoffs is
challenging because they are a function of unforeseeable at-
tributes such as user mobility and changes in the environ-
ment.

In this paper, we study predictability of handoffs based
on the data from a major US cellular provider’s radio net-
work. We start by showing that attributes that reflect recent
mobility history, connected cell density, and signal strength
variation are correlated with future handoff rates (§4). Then,
we develop a two-phase machine learning framework that
uses a combination of these attributes to predict the occur-
rence and the frequency of handoffs in the near future (§5).

Our evaluation on a large number of real handoff traces
shows promising results. Using information available at ei-
ther the handset or the network infrastructure, we are able
to achieve 80% accuracy in predicting the occurrence of a
handoff in the near future — much better than the 53% ac-
curacy achieved by a simple, naive predictor. Overall, we
believe that our analysis provides a promising start towards
a practical framework that handsets could use to accurately
predict handoffs and better tolerate the performance disrup-
tions that can accompany them.

2. HANDOFFS IN A UMTS NETWORK
We consider handoffs in a UMTS (Universal Mobile Telecom-
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Figure 1: Distributions of (a) time to next handoff over all times in all traces, and (b) number of handoffs in

four time interval sizes.

munications System) network, the most common 3G stan-
dard in the world. In a UMTS network, a user device con-
nects to a set of cells. A cell is defined by the area covered by
a single antenna on a physical basestation (typically a few
km?) and its frequency (e.g., 850Mhz or 1900Mhz). Each
basestation typically has 3-6 cells, and is managed by a Ra-
dio Network Controller (RNC). A single RNC controls tens
to hundreds of basestations. In order to maintain IP con-
nections while users are mobile, all IP traffic from a device
is tunneled through the RNC to the core network.

At any point in time, a user device may be within the
coverage area of multiple cells. When a device begins trans-
mitting or receiving data, it establishes a connection with
one or more of these cells, typically the ones with a suffi-
ciently high signal-to-noise ratio (SNR). The set of cells a
device is connected to, which must all be on the same fre-
quency, is called the active set. In the network we examine,
the size of the active set is limited to 4. While connected,
cells may be added or removed from the active set as their
SNRs change. This process is called soft handover. In ad-
dition, it may disconnect from all cells in the active set and
instead connect to cells on a different frequency. This event
is called inter-frequency handover. At each point in time,
only one cell in the active set, called the serving cell, will
actually transmit data to the device.! This is typically the
cell with the highest SNR. When data ceases to be sent or
received for a short time period (typically a few seconds),
the device disconnects from all cells.

In this paper, we define a handoff to be a change in a de-
vice’s serving cell, as this change physically alters a device’s
network path and, thus, can impact performance. It also
involves signalling overhead. Note that a handoff is distinct
from the process of soft handover, which may add or remove
cells from a device’s active set without actually changing the
serving cell. However, handoff includes all inter-frequency
handover events. Finally, note that there can be no hand-
offs when a device is idle, as it does not have any serving cell.
Handoff decisions are based on a deterministic function of
recent SNR measurements reported by the device and the
load on each cell [13]. While the network can determine
whether a handoff will occur at the current time instant,
future handoffs are affected by less predictable factors such
as user mobility and environmental changes, which affect
channel quality.

"HSPA devices, which generate the vast majority of traffic in the
UMTS network we examine, have a single serving cell, but older
devices receive data from all cells in the active set simultaneously.

3. DATA SET

To analyze the predictability of handoffs of real users, we
collected 1 day of anonymized event logs from several RNCs
in a major U.S. cellular operator in May 2011. These RNCs
control a significant fraction of the base-stations in a large
U.S. city. We analyze events from three logs the RNC main-
tains: the ServCellLog, which records the serving cell and
active set for each device every two seconds when the de-
vice is active; the SNRLog, which records the SNR values
of all cells measured by a device in each measurement re-
port sent to the RNC; and the SOHOLog, which records
the soft handover events (i.e., additions and removals from
each device’s active set). Each log record is timestamped
and devices are anonymously identified by an irreversible
hash of the device’s IMSI, which is unique per SIM card.
All device and subscriber identifiers are anonymized to pro-
tect privacy without affecting the usefulness of our analy-
sis. Furthermore, the data set does not permit reversing the
anonymization or re-identification of subscribers.

For each device, the aforementioned events are captured
when its radio is in the HSPA active state (i.e., in the DCH
state described in [8]). We define a trace to be the sequence
of events from a device for a contiguous active time. We
determine a handoff occurred in a trace whenever the serving
cell changes between two consecutive events in ServCellLog.
To eliminate boundary effects of short traces, we concentrate
on long traces and, thus, filtered out all traces that were
shorter than 5 minutes. In total, we analyzed 5,000 traces.
In these traces, we saw about 60,000 handoff events between
approximately 1,200 distinct cells.

We note that although we analyze handoffs from events
seen at RNCs, these events could be made available to the
applications running on a device as well. Some events are
already exposed via smartphone APIs (e.g., SNR values),
while we believe others could be made available from cellu-
lar device drivers. This paper motivates making this infor-
mation available via API.

To illustrate properties of handoffs in our dataset, Fig-
ure 1(a) plots the cumulative distribution function (CDF)
of the time to next handoff for a random sample in our
traces. The CDF levels off at about 55% because 45% of
the points either fall within a trace that has no handoffs or
fall after the last handoff in a trace. This plot suggests the
following naive handoff predictor: estimate the likelihood of
a handoff occurring within ¢ seconds as the percentile that
corresponds to ¢ in the plot. For instance, the naive pre-
dictor would estimate the likelihood of a handoff occurring
within the next 30 seconds to be always 22% and within 200
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Figure 2: The handoff rate in the next 60 seconds compared with (a) the handoff rate in the past 60 seconds,
(b) the size of the active set, (c) the rate of updates to the active set, and (d) the mean signal strength of
the serving cell. For clarity, we quantize the samples into groups and plot the mean and standard deviation

of each group.

seconds to be 47%.

Figure 1(b) plots the CDF of the number of handoffs in
all 30, 60, 120 and 240 second time intervals in our traces.
The figure shows that there is no handoff in about 80%,
70%, 63%, and 60% of 30, 60, 120, and 240 second intervals,
respectively. On the other hand, some intervals have many
handoffs. For example, 1% of 30 second intervals have more
than 5 handoffs. Thus, applications may want to predict not
only whether a handoff will occur, but also the frequency of
handoffs.

4. DISCRIMINATIVE ATTRIBUTES

The key to predicting future handoffs is uncovering at-
tributes that have a strong correlation with future handoffs
rates. In this section, we describe four attributes that we
found to have a correlation with future handoffs, namely
past handoff rate, size of the active set, active set update
rate and signal strength variation. Each of these attributes
could be obtained both on the handset and at the RNC,
making our prediction technique useful for both application
developers and network operators.

To show the correlations, we averaged an attribute value
over a historical time window of h seconds and plotted it
against the handoff rate of the next ¢t seconds. Although
we experimented with various historical and future window
sizes, we show results for only h = 60 seconds and ¢ = 60
seconds due to space limitations. The correlations remained
similar for other choices of h and t as well.

For each plot in Figure 2, we grouped data points into
clusters based on the attribute values and plotted its mean
future handoff rate with its standard deviation. We also
plotted the size of each group on the second y axis. We next
describe each of the attributes in detail.

4.1 Past Handoff Rate

We hypothesized that handoff rates of the recent past is a
good predictor of handoffs in the near future. This is because

in short time scales one’s mobility pattern is likely to stay the
same. Figure 2 (a) depicts the correlation between the past
handoff rate and the future handoff rate. The figure shows
that the correlation between the past and future handoff
rates is quite pronounced (correlation coefficient of 0.56),
which indicates that historical handoff rates are potentially
a strong predictor. As we show in §5, this is indeed the case.

4.2 Size of the Active Set

Recall that an active set contains up to 4 cells that are
above a certain signal strength threshold. A large number
of cells in the active set implies more options in choosing a
serving cell, and thus a stronger potential for handoffs.

Figure 2 (b) shows the correlation between the size of the
active set and the future handoff rate. Although the fig-
ure shows a positive correlation (correlation coefficient of
0.39), there are two factors that reduce the effectiveness of
the active set size at predicting future handoff: large stan-
dard deviations and the dips that occur when the active
set size is 1, 2 and 3. Large standard deviations are the
result of the active set sizes not reflecting the mobility of
the handset. The dips that occur at integral values are due
to a large number of stationary users that fall within these
three groups. This is because stationary users tend to have
a constant active set size and no handoffs. We verified that
groups that correspond to integral set sizes indeed contain
a large fraction of points with no handoffs.

4.3 Active Set Update Rate

Changes in the active set, such as an addition or a removal
of a cell, may be good indicators of mobility and, consequen-
tially, of future handoff rates. Figure 2 (c) shows a positive
correlation between the mean active set update rate and the
future handoff rate (correlation coefficient of 0.5). The de-
crease in correlation when active set update is greater than
0.48 is due to the small sample size (less than 100 points per
group) as shown on the second y axis.



Note that changes to the active set may be caused by
removal and additions of cells with similar signal strengths
due to signal strength fluctuations. These changes may not
lead to future handoffs. Indeed, in §5, we show that using
active set update rates results in relatively high false positive
rates.

4.4 Signal Strength Variation

Since the instantaneous handoff decisions made by the
RNC depend upon the signal strength fluctuations of the
cells in the active set, there might be a correlation between
recent fluctuations in the signal strength of the serving cell
and the future handoff rate. Figure 2 (d) plots the correla-
tion between the mean serving cell signal strength variance
and the future handoff rate. In this case, the correlation
is relatively small (correlation coefficient of 0.18). Indeed,
as we show in §5, this attribute turned out to be the worst
predictor of future handoff rates. This may be due to two
reasons: 1)the variance of the signal strength of the serv-
ing cell is irrelevant unless the signal strength falls below a
certain threshold and 2)signal strengths of neighboring cells
is also important because of the hysteresis associated with
handoff. This difficulty in prediction may be overcome if we
consider fingerprinting using signal strengths from neigh-
boring cells as well, as shown in previous work on mobility
detection [11]. and indoor localization [15]. We intend to
investigate this in future work.

5. PREDICTING HANDOFF BEHAVIOR

This section describes our handoff prediction algorithm
and its evaluations. We first present our prediction algo-
rithm, which is divided into two parts: predicting the oc-
currence of a handoff and its frequency. Then, we answer
four questions related to the accuracy of the predictor:

1. What’s the accuracy of our occurrence predictor? (§5.2.1)

2. How much history do we need for accurate predic-
tion? (§5.2.2)

3. How sensitive is the accuracy to the future window
size? (§5.2.3)

4. What’s the overall accuracy of our predictor including
the frequency predictor? (§5.2.4)

5.1 The Learning Algorithm

Handoff predictions are made over a future time window
of a certain length. We use the features described in §4 to
train a two-stage cascading predictor. The first level decides
whether there is an impending handoff in the time window
considered or not (occurrence predictor). If the window is
large enough such that more than a few handoffs could occur,
we apply the second binary predictor which classifies each
handoff period as a period of high or low handoff frequency,
which we define in §5.2.4 (frequency predictor).

Both our prediction classifiers use AdaBoost [1] with de-
cision stumps for the training phase. We have chosen to use
boosting since it has been shown to work well for a variety of
classification tasks [16, 9]. We tried other approaches, such
as Logistic Regression and naive heuristic-based methods,
and found that AdaBoost provides the best results. We also
obtained results with a single multiclass classifier (no hand-
off, high frequency handoff, low frequency handoff) instead
of our two-stage predictor and found that the latter results
in higher accuracy.

5.2 Evaluation

For evaluation, we trained our predictor on one-fourth of
the data with 5-fold cross-validation® and used the remain-
ing data for testing purposes.

5.2.1 Predicting the Occurrence

We first test the accuracy of the handoff occurrence pre-
dictor. We use three metrics for accuracy: 1) overall accu-
racy, the percentage of test examples predicted correctly, 2)
false negative rate, the percentage of actual handoff events in
the test set wrongly classified as non-handoffs, and 3) false
positive rate, the percentage of actual non-handoffs mistak-
enly predicted as handoffs.

Table 1 shows the performance of our combined predic-
tor along with other simple predictors over a future window
of 60 seconds. Specifically, the table shows the prediction
performance of each attribute when it is the only feature
used in the learner as well as the performance of a naive
predictor from §3. Each attribute is computed over 10, 30,
and 60 seconds of history to best capture temporal variations
(we explain this choice in §5.2.2).

Attribute | Accuracy False Positive False Negative
Past handoff rate 79.5% 11.14% 42.0%
Mean active set size 76.1% 11.5% 51.0%
Active set update rate 76.5% 15.3% 43.7%
Signal strength variance 75.7% 13.4% 49.5%
Combined predictor 80.3% 11.6% 38.3%
Naive predictor 53.4% 31.1% 69.0%

Table 1: Prediction performance of individual fea-
tures, combined features and the naive predictor.

Table 1 shows that all of the attributes result in reason-
able accuracy when used alone in the predictor, verifying our
intuition about their predictive power. We also see that the
combined classifier improves upon the overall accuracy and
the false negative rate (% of actual handoff events missed).
The combined predictor is also much more accurate than
the naive heuristic-based predictor. Note that the false neg-
ative rate in all cases is much higher, and overall accuracy is
biased towards the false positive rate. This is because hand-
off events are infrequent. For example, Figure 1 shows that
around 70% of data points have no handoffs in the next 60
seconds.

Reducing False Negatives: A high overall accuracy
may not be sufficient for a handoff predictor. For example,
a streaming application may be able to tolerate false hand-
off predictions by using a little extra buffering but may not
be able to tolerate missed handoffs because unexpected dis-
ruptions may cause a stall in the stream. In other words,
the application may want to reduce the false negative rate
possibly at the cost of a higher false positive rate.

We can reduce the false negative rates shown in Table 1 by
assigning a higher cost to false negatives than false positives
through Asymmetric Boosting [5]. In particular, we show
results when the cost of a false negative is twice that of a
false positiveS.

2In k-fold cross-validation, the training data set is partitioned into &
parts, and k training and testing iterations are performed, each time
using k — 1 partitions used for training and one used for testing.
The final classifier is the average of these k runs.

3In general, we found that higher values caused convergence issues
and lower values led to worse false negative rates.



Attribute | Accuracy False Positive False Negative

Past handoff rate 79.0% 17.0% 30.4%
Mean active set size 72.6% 31.1% 18.8%
Active set update rate 71.7% 32.4% 18.8%
Signal strength variance 71.8% 32.2% 19.0%
Combined predictor | 781% 21.8% 22.0%

Table 2: Prediction performance of individual fea-
tures and the combined predictor with a cost-
sensitive classifier.

Table 2 shows that this cost-sensitive prediction results
in a large reduction in the false negative rate at the ex-
pense of a modest increase in the false positive rate and a
slight decrease in overall accuracy. It also shows that some
attributes respond more sharply to the cost-sensitive pre-
dictor than others. For example, the false negative rate for
mean active set size dropped precipitously from 51% to
19% with the introduction of the asymmetric cost values. In
contrast, past handoff rate still has a higher false negative
rate (30%) than its false positive rate (17%). In other words,
it is conservative in predicting handoff occurrences even af-
ter cost-sensitivity is introduced. We conjecture that this is
due to the relatively smaller variation in the past handoff
rate values, as shown in Figure 2 (a). Attributes with high
variance would be more responsive to cost-sensitive predic-
tion and hence more aggressive in predicting the handoff
occurrence.

5.2.2  How Much History is Needed?

Each attribute discussed in §4 is computed over one or
more recent time windows. Predicting based on more history
can be beneficial because it will better capture temporal
variations. However, the more history needed, the longer a
handset will have to wait to make accurate predictions after
initiating activity. Thus, we want to find the the minimum
history needed for good predictive power.

To determine how much history is needed, Figure 3 plots
prediction accuracy for the next 60 seconds (without the
cost-sensitive modification) as we increase the amount of
history used. To ensure that more history never reduces
predictive power, each marked x-axis point x represents a
predictor that uses attributes computed using x seconds of
history in addition to attributes computed using =’ seconds
of history for all marked x-axis points 2’ < z. For exam-
ple, the point at x = 60 shows the accuracy of a predic-
tor using attributes computed over 5, 10, 30 and 60 second
history windows. Figure 3 shows that using more history
improves accuracy primarily due to a reduction in false neg-
atives. This is because observing slightly more history is
much more likely to accurately measure the true past hand-
off rate and hence capture the short-term mobility pattern
better. Nonetheless, it is clear that the performance for all
three error metrics doesn’t improve much beyond 60 seconds
of history. Hence, we use attributes computed on 10, 30, and
60 seconds of history in our classifier.

5.2.3 Predicting over Different Time Windows

Since different applications may want to forecast the like-
lihood of handoffs over different time intervals, we evaluate
prediction accuracy over several different prediction time
windows in Figure 4. Each point (z,y) on an error curve
shows the prediction error y in predicting whether there is
going to be a handoff within the next x seconds. Also plotted
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Figure 3: Handoff predictor performance as the
number of historical windows is increased.

in dotted curves are the error rates for the naive predictor.
The results clearly show that our predictor is more accurate
than the naive predictor for all prediction windows.
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5.2.4 Predicting Handoff Frequency

As we observed in §3, some time intervals have many more
handoffs than others, so it is also useful to predict the fre-
quency of handoffs. For example, a streaming application
may benefit by sizing its buffer based on the frequency of
potential disruptions. Hence, we implement a second-stage
classifier that takes positive handoff predictions from the
first-stage and classifies them into low- or high-frequency.
The threshold for a high-frequency period is the median
non-zero number of handoffs during the period for the entire
dataset. For example, from Figure 1 (b), for the 60 second
interval, 4 or more handoffs is considered high frequency.

Table 3 shows the results for this classifier for the next 60
seconds. It shows a large majority of intervals are predicted
correctly (94% of low-frequency and 77% of high-frequency
intervals). We also note that almost all (98.5%) of the false
positives from the first-stage classifier (not shown) are clas-
sified into low-frequency by the second-stage, so adding this
stage does not compound those errors.

Actual
Low Freq. High Freq.
. Low Freq. 94.5% 5.5%
Predicted = 1r. 1 Freq. | 23.3% 76.7%

Table 3: Predicted vs actual handoff frequencies for
the next 60 seconds. Bold cells are correct predic-
tions.



6. RELATED WORK

Due to the highly dynamic and uncertain nature of wire-
less communication, there has been a large number of studies
on predicting critical network-related events and leveraging
of those predictions to enhance performance or energy ef-
ficiency. Some studies have exploited the repeated mobil-
ity patterns. For example, Bartendr [10] leverages the pre-
dictability of commuter routes and stability of RSSI values
over those routes to make highly accurate signal strength
predictions, which are then used to make energy-efficient
scheduling decisions. Similarly Breadcrumbs [6] remembers
bandwidth measurements at previously visited locations to
make Wifi connectivity forecasts that could be used for effi-
cient network usage. Our technique for handoff prediction is
oblivious to the path and/or direction being taken, and do
not require any WiFi or GPS based location measurement.
Instead, we rely only on measurements collected by a hand-
set as part of normal operation, such as serving and active
cell IDs and their signal strengths.

Mobility pattern detection can help in handoff prediction.
To this end [17, 2] develop statistical learning models using
GPS location data and classify the user’s movement into
high-level mobility patterns, such as walking, running or
driving. Sohn et al. [11] applies similar techniques using
cellular network measurements (RSSI values, neighboring
cell IDs) to infer such mobility patterns. Our work pre-
dicts handoffs without mobility detection as an intermedi-
ate step. Furthermore, unlike these studies, which use only
a few manually-collected data traces, our analysis leverages
more than 5000 traces from about 3000 distinct handsets
collected at the backbone of a large cellular carrier.

Although there has been work on handoff prediction in
WiFi and cellular networks, almost all of these studies rely
on either physics-based models of user mobility [3], analytic
models of traffic management [7] at cells or simulation-based
evaluations on synthetic topologies [3, 7]. To our knowledge,
our work is the first data-driven approach to tackle cellular
handoff prediction using a large number of actual cellular
user traces without any assumptions about cell topology or
traffic characteristics. Although Song et al. [12] use WiFi
AP data collected on a university campus to evaluate hand-
off prediction in WLANS, their design depends, however, on
a centralized authority that makes predictions and dissemi-
nates instructions to the various APs.

7. CONCLUSION AND FUTURE WORK

Predicting future handoff is important for mobile applica-
tions and wireless network operators. This paper explored
the possibility of accurately predicting future handoffs us-
ing a simple set of attributes that are readily available at
the handset as well as at the network. To this end, we ana-
lyzed several attributes that intuitively reflect the user mo-
bility and the environment. Based on a large scale analysis,
we showed that it is possible to predict impending handoffs
with almost 80% accuracy.

We believe that this is a significant step towards under-
standing and predicting the behavior of individual handsets.
We envision two promising avenues for future research. We
plan to study how mobile applications might use this ability
to predict handoffs to enhance user performance or through-
put. Also, we plan to study what kind of benefits would
network providers get if they utilize such information.
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