skip to main content
10.1145/2110192.2110196acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Towards information-theoretic visualization evaluation measure: a practical example for Bertin's matrices

Published:10 April 2010Publication History

ABSTRACT

This paper presents a discussion about matrix-based representation evaluation measures, including a review of related evaluation measures from different scientific disciplines and a proposal for promising approaches. The paper advocates linking or replacing a large portion of indefinable aesthetics with a mathematical framework and theory backed up by an incomputable function -- Kolmogorov complexity. A suitable information-theoretic evaluation measure is proposed together with a practical approximating implementation example for Bertin's Matrices.

References

  1. Ghoniem, M., Fekete, J., and Castagliola, P. 2005. On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Information Visualization 4, 2, 114--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Henry, N. and Fekete, J., & McGuffin, M. J. 2007. NodeTrix: a Hybrid Visualization of Social Networks. IEEE Transactions on Visualization and Computer Graphics 13, 6, 1302--1309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Henry, N. and Fekete, J. 2006. MatrixExplorer: a Dual-Representation System to Explore Social Networks. IEEE Transactions on Visualization and Computer Graphics 12, 5, 677--684. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Katz, L. 1947. On the Matric Analysis of Sociometric Data. Sociometry, 10(3), 233--241.Google ScholarGoogle ScholarCross RefCross Ref
  5. Forsyth, E., & Katz, L. 1946. A Matrix Approach to the Analysis of Sociometric Data: Preliminary Report. Sociometry, 9(4), 340--347.Google ScholarGoogle ScholarCross RefCross Ref
  6. Moreno, J. L. 1946. Sociogram and Sociomatrix: A Note to the Paper by Forsyth and Katz. Sociometry, 9(4), 348--349.Google ScholarGoogle ScholarCross RefCross Ref
  7. Henry, N. and Fekete, J. 2006. Evaluating visual table data understanding. In Proceedings of the 2006 AVI Workshop on Beyond Time and Errors: Novel Evaluation Methods For information Visualization (Venice, Italy, May 23--23, 2006). BELIV '06. ACM, New York, NY, 1--5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bertin, J. 1981. Graphics and Graphic Information Processing. Berlin: Walter de Gruyter (Translated by W. J. Berg and P. Scott).Google ScholarGoogle Scholar
  9. Bertin, J. 1967. Sémiologie graphique: les diagrammes, les réseaux, les cartes. Paris: Mouton.Google ScholarGoogle Scholar
  10. Mueller, C., Martin, B., and Lumsdaine, A. A comparison of vertex ordering algorithms for large graph visualization, In Proceedings of Asia-Pacific Symposium on Visualization 2007, 141--148.Google ScholarGoogle ScholarCross RefCross Ref
  11. Ling, R. L. 1973. A computer generated aid for cluster analysis. Commun. ACM 16, 6 (Jun. 1973), 355--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Liiv, I. "Seriation and Matrix Reordering Methods: An Historical Overview", Statistical Analysis and Data Mining, 2010, in press. Google ScholarGoogle ScholarCross RefCross Ref
  13. Wilkinson, L. and Friendly, M. 2009. The History of the Cluster Heat Map. The American Statistician, 63(2), 179--184.Google ScholarGoogle ScholarCross RefCross Ref
  14. Chandrasekharan, M. P., & Rajagopalan, R. 1989. Groupability: an analysis of the properties of binary data for group technology. International Journal of Production Research, 27, 1035--1052.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kumar, K. R., & Chandrasekharan, M. P. 1990. Group efficacy: a quantitative criterion for goodness of block diagonal forms of binary matrices in group technology. International Journal of Production Research, 28(2), 233--243.Google ScholarGoogle ScholarCross RefCross Ref
  16. O'Brien, M. J., & Lyman, R. L. 1999. Seriation, Stratigraphy, and Index Fossils: The Backbone of Archaeological Dating. New York: Kluwer Academic/Plenum Publishers.Google ScholarGoogle Scholar
  17. Bar-Joseph, Z., Gifford, D. K., & Jaakkola, T. S. 2001. Fast optimal leaf ordering for hierarchical clustering. Bioinformatics, 17(S1), S22--S29.Google ScholarGoogle ScholarCross RefCross Ref
  18. Bar-Joseph, Z., Demaine, E. D., Gifford, D. K., Srebro, N., Hamel, A. M., & Jaakkola, T. S. 2003. K-ary Clustering with Optimal Leaf Ordering for Gene Expression Data. Bioinformatics, 19(9), 1070--1078.Google ScholarGoogle ScholarCross RefCross Ref
  19. Verin, L. L., & Grishin, V. G. 1986. Algorithm for interactive forming matrix data representation and estimation of its efficiency. Pattern Recognition Letters, 4, 193--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. McCormick, W. T., Schweitzer, P. J., & White, T. W. 1972. Problem Decomposition and Data Reorganization by a Clustering Technique. Operations Research, 20(5), 993--1009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Niermann, S. 2005. Optimizing the Ordering of Tables With Evolutionary Computation. The American Statistician, 59(1), 41--46.Google ScholarGoogle ScholarCross RefCross Ref
  22. Keim, D. A. 2000. Designing Pixel-Oriented Visualization Techniques: Theory and Applications. IEEE Transactions on Visualization and Computer Graphics 6, 1, 59--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Keim, D. A, Schneidewind, J., & Sips, M. 2007. Scalable Pixel-based Visual Data Exploration in "Pixelization Paradigm", Lecture Notes in Computer Science, Vol. 4370, Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kosara, R, Bendix, F., & Hauser, H. 2006. Parallel Sets: Interactive Exploration and Visual Analysis of Categorical Data. IEEE Transactions on Visualization and Computer Graphics 12, 4, 558--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Seo, J., Shneiderman, B. 2006. Knowledge Discovery in High-Dimensional Data: Case Studies and a User Survey for the Rank-by-Feature Framework. IEEE Transactions on Visualization and Computer Graphics 12, 3, 311--322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rissanen, J. 1978. Modelling by shortest data description. Automatica, 14, 465--471.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Grünwald, P. D. 2007. The Minimum Description Length Principle. Cambridge, MA: MIT Press.Google ScholarGoogle Scholar
  28. Keogh, E., Lonardi, S., & Ratanamahatana, C. A. 2004. Towards Parameter-Free Data Mining. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, Seattle, WA, USA, August 22--25, 2004, 206--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Dhillon, I. S., Mallela, S., & Modha, D. S. 2003. Information-Theoretic Co-Clustering. In Proceedings of The Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD-2003), Washington, DC, USA, August 24--27, 2003, 89--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Faloutsos, C., & Megalooikonomou, V. 2007. On data mining, compression, and Kolmogorov. Data Mining and Knowledge Discovery, 15(1), 3--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wilkinson, L. 2005. The Grammar of Graphics (2nd Edition). Springer: New York. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Towards information-theoretic visualization evaluation measure: a practical example for Bertin's matrices

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        BELIV '10: Proceedings of the 3rd BELIV'10 Workshop: BEyond time and errors: novel evaLuation methods for Information Visualization
        April 2010
        92 pages
        ISBN:9781450300070
        DOI:10.1145/2110192

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 10 April 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        BELIV '10 Paper Acceptance Rate12of18submissions,67%Overall Acceptance Rate45of64submissions,70%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader