skip to main content
10.1145/2147805.2147907acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Using HLA binding prediction algorithms for epitope mapping in HIV vaccine clinical trials

Published:01 August 2011Publication History

ABSTRACT

Current HIV vaccines are designed to elicit both T-cell and B-cell responses. A common endpoint in any T-cell based vaccine trial are measurements of vaccine-induced T-cell responses such as breadth and magnitude [7]. In order to measure such endpoints blood samples are collected at multiple timepoints. Current immunological assays for measuring T-cell responses are functional assays in which peripheral blood mononuclear cells (PBMC) is incubated with target peptide(s) and then the release of various cytokines such as IFN-γ are measured. The major limiting factor in these mappping studies is sample availability, as each of these tests requires an order of 100K live cells. Therefore current mapping strategies use a group-testing approach in which responses to the immunogen are first measured using peptide pools that span a full protein, and are then further refined using sets of mini-pool and finally a peptide matrix [23].

In this paper we explore the idea of using HLA binding predictors to improve the efficiency of epitope mapping protocols in vaccine trials. Given information about participant's HLA alleles, we attempt to predict vaccine induced T-cell responses at various levels of refinement, based on the current group-testing hierarchical mapping approach. Using extensive epitope mapping data from a cohort of 12 acutely infected HIV infected individuals, we show that using state-of-the-art HLA binding predictors, significant improvements in mapping efficiency can be obtained.

References

  1. Y. Altuvia and H. Margalit. A structure-based approach for prediction of MHC-binding peptides. Methods, 34:454--459, Dec 2004.Google ScholarGoogle ScholarCross RefCross Ref
  2. E. Assarsson, H.-H. Bui, J. Sidney, Q. Zhang, J. Glenn, C. Oseroff, I. N. Mbawuike, J. Alexander, M. J. Newman, H. Grey, and A. Sette. Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. Journal of Virology, 82(24):12241--51, Dec 2008.Google ScholarGoogle ScholarCross RefCross Ref
  3. V. Brusic, N. Petrovsky, G. Zhang, and V. B. Bajic. Prediction of promiscuous peptides that bind HLA class I molecules. Immunol. Cell Biol., 80:280--285, Jun 2002.Google ScholarGoogle ScholarCross RefCross Ref
  4. V. Brusic, G. Rudy, and L. C. Harrison. Prediction of MHC binding peptides using artificial neural networks. Complexity International, 2, april 1995.Google ScholarGoogle Scholar
  5. S. Buus, S. Lauemoller, P. Worning, C. Kesmir, T. Frimurer, S. Corbet, A. Fomsgaard, J. Hilden, A. Holm, and S. Brunak. Sensitive quantitative predictions of peptide-MHC binding by a 'query by committee' artificial neural network approach. Tissue Antigens, 62(5):378--384, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  6. P. Dãűnnes and A. Elofsson. Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics, 3:25, Sep 2002.Google ScholarGoogle ScholarCross RefCross Ref
  7. P. B. Gilbert, I. W. McKeague, and Y. Sun. The 2-sample problem for failure rates depending on a continuous mark: an application to vaccine efficacy. Biostatistics (Oxford, England), 9(2):263--76, Apr 2008.Google ScholarGoogle Scholar
  8. P. B. Gilbert, A. Sato, X. Sun, and D. V. Mehrotra. Efficient and robust method for comparing the immunogenicity of candidate vaccines in randomized clinical trials. Vaccine, 27(3):396--401, Jan 2009.Google ScholarGoogle ScholarCross RefCross Ref
  9. P. Guan, I. A. Doytchinova, C. Zygouri, and D. R. Flower. MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. Appl. Bioinformatics, 2:63--66, 2003.Google ScholarGoogle Scholar
  10. K. Gulukota, J. Sidney, A. Sette, and C. DeLisi. Two complementary methods for predicting peptides binding major histocompatibility complex molecules. Journal of Molecular Biology, 267:1258--1267, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  11. D. Heckerman, C. Kadie, and J. Listgarten. Leveraging information across HLA alleles/supertypes improves epitope prediction. J Comput Biol, 14(6):736--46, Jan 2007.Google ScholarGoogle ScholarCross RefCross Ref
  12. T. Hertz, D. Nolan, I. James, M. John, S. Gaudieri, E. Phillips, J. C. Huang, G. Riadi, S. Mallal, and N. Jojic. Mapping the landscape of host-pathogen coevolution: Hla class i binding and its relationship with evolutionary conservation in human and viral proteins. Journal of Virology, 85(3):1310--21, Feb 2011.Google ScholarGoogle ScholarCross RefCross Ref
  13. T. Hertz and C. Yanover. Pepdist: A new framework for protein-peptide binding prediction based on learning peptide distance functions. BMC Bioinformatics, 7(Suppl 1):S3, Jan 2006.Google ScholarGoogle ScholarCross RefCross Ref
  14. I. Hoof, B. Peters, J. Sidney, L. E. Pedersen, A. Sette, O. Lund, S. Buus, and M. Nielsen. Netmhcbpan, a method for MHC class I binding prediction beyond humans. Immunogenetics, 61(1):1--13, Jan 2009.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. L. Hughes. Looking for darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity, 99(4):364--73, Oct 2007.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. L. Hughes and M. Nei. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature, 335(6186):167--70, Sep 1988.Google ScholarGoogle ScholarCross RefCross Ref
  17. A. L. Hughes, B. Packer, R. Welch, S. J. Chanock, and M. Yeager. High level of functional polymorphism indicates a unique role of natural selection at human immune system loci. Immunogenetics, 57(11):821--7, Dec 2005.Google ScholarGoogle ScholarCross RefCross Ref
  18. N. Jojic, M. Reyes-Gomez, D. Heckerman, C. Kadie, and O. Schueler-Furman. Learning MHC I--peptide binding. Bioinformatics, 22(14):e227--35, Jul 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. Li, U. Malhotra, P. B. Gilbert, N. R. Hawkins, A. C. Duerr, J. M. McElrath, L. Corey, and S. G. Self. Peptide selection for human immunodeficiency virus type 1 CTL-based vaccine evaluation. Vaccine, 24:6893--6904, Nov 2006.Google ScholarGoogle ScholarCross RefCross Ref
  20. H. Lin, S. Ray, S. Tongchusak, E. L. Reinherz, and V. Brusic. Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research. BMC Immunol, 9(1):8, Jan 2008.Google ScholarGoogle ScholarCross RefCross Ref
  21. A. Llano, N. Frham, and C. Brander. How to optimally define optimal cytotoxic t lymphocyte epitopes in hiv infection? HIV Molecular Immunology, pages I--3--5, 2009.Google ScholarGoogle Scholar
  22. H. Mamitsuka. Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins, 33(4):460--474, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  23. M. J. McElrath, S. C. D. Rosa, Z. Moodie, S. Dubey, L. Kierstead, H. Janes, O. D. Defawe, D. K. Carter, J. Hural, R. Akondy, S. P. Buchbinder, M. N. Robertson, D. V. Mehrotra, S. G. Self, L. Corey, J. W. Shiver, D. R. Casimiro, and S. S. P. Team. Hiv-1 vaccine-induced immunity in the test-of-concept step study: a case-cohort analysis. Lancet, 372(9653):1894--905, Nov 2008.Google ScholarGoogle ScholarCross RefCross Ref
  24. D. Meyer, R. M. Single, S. J. Mack, H. A. Erlich, and G. Thomson. Signatures of demographic history and natural selection in the human major histocompatibility complex loci. Genetics, 173(4):2121--42, Aug 2006.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. Moutaftsi, B. Peters, V. Pasquetto, D. C. Tscharke, J. Sidney, H.-H. Bui, H. Grey, and A. Sette. A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol, 24(7):817--9, Jul 2006.Google ScholarGoogle ScholarCross RefCross Ref
  26. M. Nielsen, C. Lundegaard, P. Worning, S. L. LauemÃÿller, K. Lamberth, S. Buus, S. Brunak, and O. Lund. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci., 12:1007--1017, May 2003.Google ScholarGoogle ScholarCross RefCross Ref
  27. B. Peters, H.-H. Bui, S. Frankild, M. Nielson, C. Lundegaard, E. Kostem, D. Basch, K. Lamberth, M. Harndahl, W. Fleri, S. S. Wilson, J. Sidney, O. Lund, S. Buus, and A. Sette. A community resource benchmarking predictions of peptide binding to MHC-i molecules. PLoS Computational Biology, 2(6):e65, Jun 2006.Google ScholarGoogle ScholarCross RefCross Ref
  28. B. Peters and A. Sette. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics, 6:132, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  29. B. Peters and A. Sette. Integrating epitope data into the emerging web of biomedical knowledge resources. Nature Reviews Immunology, 7(6):485--90, Jun 2007.Google ScholarGoogle ScholarCross RefCross Ref
  30. B. Peters, J. Sidney, P. Bourne, H.-H. Bui, S. Buus, G. Doh, W. Fleri, M. Kronenberg, R. Kubo, O. Lund, D. Nemazee, J. V. Ponomarenko, M. Sathiamurthy, S. P. Schoenberger, S. Stewart, P. Surko, S. Way, S. Wilson, and A. Sette. The design and implementation of the immune epitope database and analysis resource. Immunogenetics, 57(5):326--336, Jun 2005.Google ScholarGoogle ScholarCross RefCross Ref
  31. F. Prugnolle, A. Manica, M. Charpentier, J. F. Guégan, V. Guernier, and F. Balloux. Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol, 15(11):1022--7, Jun 2005.Google ScholarGoogle ScholarCross RefCross Ref
  32. P. A. Reche, J. P. Glutting, H. Zhang, and E. L. Reinher. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics, 26(6):405--419, 2004.Google ScholarGoogle Scholar
  33. A. B. Riemer, D. B. Keskin, G. Zhang, M. Handley, K. S. Anderson, V. Brusic, B. Reinhold, and E. L. Reinherz. A conserved e7-derived cytotoxic t lymphocyte epitope expressed on human papillomavirus 16-transformed hla-a2+ epithelial cancers. J Biol Chem, 285(38):29608--22, Sep 2010.Google ScholarGoogle ScholarCross RefCross Ref
  34. O. Schueler-Furman, Y. Altuvia, A. Sette, and H. Margalit. Structure-based prediction of binding peptides to MHC class I molecules: application to a broad range of MHC alleles. Protein Sci, 9(9):1838--1846, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  35. N. Takahata and M. Nei. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics, 124(4):967--78, Apr 1990.Google ScholarGoogle Scholar
  36. N. Zaitlen, M. Reyes-Gomez, D. Heckerman, and N. Jojic. Shift-invariant adaptive double threading: learning MHC II-peptide binding. J Comput Biol, 15(7):927--42, Sep 2008.Google ScholarGoogle ScholarCross RefCross Ref
  37. G. L. Zhang, A. M. Khan, K. N. Srinivasan, J. T. August, and V. Brusic. MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides. Nucleic Acids Res., 33:W172--179, Jul 2005.Google ScholarGoogle ScholarCross RefCross Ref
  38. H. Zhang, C. Lundegaard, and M. Nielsen. Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods. Bioinformatics, 25(1):83--9, Jan 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Using HLA binding prediction algorithms for epitope mapping in HIV vaccine clinical trials

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      BCB '11: Proceedings of the 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine
      August 2011
      688 pages
      ISBN:9781450307963
      DOI:10.1145/2147805
      • General Chairs:
      • Robert Grossman,
      • Andrey Rzhetsky,
      • Program Chairs:
      • Sun Kim,
      • Wei Wang

      Copyright © 2011 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 August 2011

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate254of885submissions,29%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader