skip to main content
column

Guest column: algebraic construction of projection PCPs

Published:07 March 2012Publication History
Skip Abstract Section

Abstract

In a projection PCP, also known as Label-Cover, the verifier makes two queries to the proof, and the answer to the first query determines at most one satisfying answer to the second query. Projection PCPs with low error probability are the basis of most NP-hardness of approximation results known today. In this essay we outline a construction of a projection PCP with low error and low blow-up. This yields sharp approximation thresholds and tight time lower bounds for approximation of a variety of problems, under an assumption on the time required for solving certain NP-hard problems exactly. The approach of the construction is algebraic, and it includes components such as low error, randomness-efficient low degree testing and composition of projection PCPs.

References

  1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation problems. Journal of the ACM, 45(3):501--555, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM, 45(1):70--122, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Arora and M. Sudan. Improved low-degree testing and its applications. Combinatorica, 23(3):365--426, 2003.Google ScholarGoogle Scholar
  4. M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability---towards tight results. SIAM Journal on Computing, 27(3):804--915, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs and applications to approximations. In Proc. 25th ACM Symp. on Theory of Computing, pages 294--304, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on Computing, 36(4):889--974, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. E. Ben-Sasson and M. Sudan. Short PCPs with polylog query complexity. SIAM Journal on Computing, 38:551--607, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. I. Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP characterizations of NP: Toward a polynomially-small error-probability. Computational Complexity, 20(3):413--504, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. I. Dinur and P. Harsha. Composition of low-error 2-query PCPs using decodable PCPs. In Proc. 41st ACM Symp. on Theory of Computing, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Interactive proofs and the hardness of approximating cliques. Journal of the ACM, 43(2):268--292, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. U. Feige and J. Kilian. Impossibility results for recycling random bits in two-prover proof systems. In Proc. 27th ACM Symp. on Theory of Computing, pages 457--468, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798--859, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bull. Amer. Math. Soc., 43:439--561, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  15. S. Khot. Guest column: inapproximability results via long code based PCPs. SIGACT News, 36:25--42, June 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. In IEEE Symposium on Foundations of Computer Science, pages 2--10, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Moshkovitz. Lecture notes in probabilistically checkable proofs, MIT. http://people.csail.mit.edu/dmoshkov/courses/pcp-mit/index.html.Google ScholarGoogle Scholar
  18. D. Moshkovitz. An alternative proof of the Schwartz-Zippel lemma. Technical report, ECCC TR10-096, 2010.Google ScholarGoogle Scholar
  19. D. Moshkovitz. The projection games conjecture and the NP-hardness of ln n-approximating Set-Cover. Technical Report TR11-112, Electronic Colloquium on Computational Complexity (ECCC), 2011.Google ScholarGoogle Scholar
  20. D. Moshkovitz and R. Raz. Sub-constant error probabilistically checkable proof of almost-linear size. Technical Report TR07-026, Electronic Colloquium on Computational Complexity, 2007.Google ScholarGoogle Scholar
  21. D. Moshkovitz and R. Raz. Sub-constant error low degree test of almost-linear size. SIAM Journal on Computing, 38(1):140--180, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. Journal of the ACM, 57(5), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes. Journal of Computer and System Sciences, 43:425--440, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  24. M. Plotkin. Binary codes with specified minimum distance. IRE Transactions on Information Theory, 6:445--450, 1960.Google ScholarGoogle ScholarCross RefCross Ref
  25. R. Raz. A parallel repetition theorem. In SIAM Journal on Computing, volume 27, pages 763--803, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. Raz and S. Safra. A sub-constant error-probability low-degree test and a sub-constant errorprobability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of Computing, pages 475--484, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to program testing. SIAM Journal on Computing, 25(2):252--271, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Sudan. Lecture notes in essential coding theory, MIT. http://people.csail.mit.edu/madhu/coding/course.htmlGoogle ScholarGoogle Scholar
  29. M. A. Tsfaman, S. G. Vlǎdut, and T. Zink. Modular curves, shimura curves, and codes better than the Varshamov-Gilbert bound. Math. Nachrichten, 109:21--28, 1982.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Guest column: algebraic construction of projection PCPs
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM SIGACT News
      ACM SIGACT News  Volume 43, Issue 1
      March 2012
      94 pages
      ISSN:0163-5700
      DOI:10.1145/2160649
      Issue’s Table of Contents

      Copyright © 2012 Author

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 March 2012

      Check for updates

      Qualifiers

      • column
    • Article Metrics

      • Downloads (Last 12 months)3
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader