skip to main content
research-article

AEGIS Automated Science Targeting for the MER Opportunity Rover

Authors Info & Claims
Published:01 May 2012Publication History
Skip Abstract Section

Abstract

The Autonomous Exploration for Gathering Increased Science (AEGIS) system enables automated data collection by planetary rovers. AEGIS software was uploaded to the Mars Exploration Rover (MER) mission’s Opportunity rover in December 2009 and has successfully demonstrated automated onboard targeting based on scientist-specified objectives. Prior to AEGIS, images were transmitted from the rover to the operations team on Earth; scientists manually analyzed the images, selected geological targets for the rover’s remote-sensing instruments, and then generated a command sequence to execute the new measurements. AEGIS represents a significant paradigm shift---by using onboard data analysis techniques, the AEGIS software uses scientist input to select high-quality science targets with no human in the loop. This approach allows the rover to autonomously select and sequence targeted observations in an opportunistic fashion, which is particularly applicable for narrow field-of-view instruments (such as the MER Mini-TES spectrometer, the MER Panoramic camera, and the 2011 Mars Science Laboratory (MSL) ChemCam spectrometer). This article provides an overview of the AEGIS automated targeting capability and describes how it is currently being used onboard the MER mission Opportunity rover.

References

  1. Bajracharya, M., Diaz-Calderon, A., Robinson, M., and Powell, M. 2005. Target tracking, approach, and camera handoff for automated instrument placement. In Proceedings of the IEEE Aerospace Conference.Google ScholarGoogle Scholar
  2. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A., Mcpeak, S., and Engler, D. 2010. A few billion lines of code later: Using static analysis to find bugs in the real world. Comm. ACM 53, 2, 66--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Calderón P., F., D. R. Thompson, D. Wettergreen. 2008. Autonomous rover reflectance spectroscopy with dozens of targets. In Proceedings of the International Symposium on Artificial Intelligence, Robotics, and Automation in Space (i-SAIRAS).Google ScholarGoogle Scholar
  4. Canny, J. 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell. 8, 679--698. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Castano, R., Estlin, T., Gaines, D., Castano, A., Chouinard, C., Bornstein, B., Anderson, R. C., Chien, S., Fukunaga, A., and Judd, M. 2006. Opportunistic rover science: Finding and reacting to rocks, clouds and dust devils. In Proceedings of the IEEE Aerospace Conference.Google ScholarGoogle Scholar
  6. Castano, R., Estlin, T., Anderson, R. C., Gaines, D., Castano, A., Bornstein, B., Chouinard, C., and Judd, M. 2007. OASIS: Onboard autonomous science investigation system for opportunistic rover science. J. Field Robotics. 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Castaño, A., Fukunaga, A., Biesiadecki, J., Neakrase, L., Whelly, P., Greeley, R., Lemmon, M., Castaño, R., and Chien, S. 2008. Automatic detection of dust devils and clouds on Mars. Machine Vision Appl. 19, 467--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dunlop, H. 2006. Automatic rock detection and classification in natural scenes. Masters thesis, CMU-RI-TR-06-40. Camegie Mellon University.Google ScholarGoogle Scholar
  9. Estlin, T., Gaines, D., Bornstein, B., Castano, R., Rabideau, G., Johnston, M., Chouinard, C., Judd, M., Anderson, R. C., and Nesnas, I. 2008. Supporting increased autonomy for a Mars rover. Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS’08).Google ScholarGoogle Scholar
  10. Fitzgibbon, A. W. Pilu, A. M., and Fisher, R. B. 1999. Direct least-squares fitting of ellipses. Pattern Anal. Machine Intell. 21, 5, 476--480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gulick, V., Morris, R. Ruzon. M., and Roush, T. 2001. Autonomous image analysis during the 1999 Marsokhod rover field test. J. Geophysical Res. 106, E4.Google ScholarGoogle ScholarCross RefCross Ref
  12. Halir, R. and Flusser, J. 1998. Numerically stable direct least squares fitting of ellipses. In Proceedings of the 6th International Conference in Central Europe on Computer Graphics, Visualization and Interactive Digital Media. 125--132.Google ScholarGoogle Scholar
  13. Hayati, S., Rankin, A., Kim, W., Leger, P., Chien, S., and Ali, K. 2007. Advanced robotics technology infusion to the NASA Mars exploration rover (MER) project. In Proceedings of the IFAC Symposium on Intelligent Autonomous Vehicles.Google ScholarGoogle Scholar
  14. Hentschel, L. M. and Page, N. W. 2002. Selection of descriptors for particle shape characterization. Particle Particle Syst. Character. 20, 1, 25--38.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kim, W. S., Nesnas, I. A., Bajracharya, M., Madison, R., Ansar, A. I., Steele, R. D., Biesiadecki, J. J., and Ali, K. S. 2009. Targeted driving using visual tracking on Mars: From research to flight. J. Field Robot. 26, 3, 243--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Marek, W. and Truszczynski, M. 1989. Relating autoepistemic and default logics. In Proceedings of the 1st International Conference on Principles of Knowledge Representation and Reasoning. H. Brachman and R. Rieter Eds., Morgan Kaufmann, San Francisco, CA, 276--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Pedersen, L. 2001. Robotic rock classification and autonomous exploration. Ph.D. thesis, CMU-RI-TR-01-14, Robotics Institute, Carnegie Mellon University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pugh, S., Barnes, D., Pullan, D., and Tyler, L. 2010. Knowledge-based science target identification system (KSTIS). In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space.Google ScholarGoogle Scholar
  19. Roush, T. 2004 Essential autonomous science inference on rovers (EASIR). In Proceedings of the IEEE Aerospace Conference.Google ScholarGoogle ScholarCross RefCross Ref
  20. Smith, T., Thompson, D. R., Wettergreen, D. Cabrol, N. A., Warren-Rhodes, K., and Weinstein, S. 2007. Life in the Atacama: Science autonomy for improved data quality. J. Geophysical Res. 112.Google ScholarGoogle Scholar
  21. Squyres, S. W. and Knoll, A. H. 2005. Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Letters 240, 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  22. Thompson, D. R. and Castano, R. 2007. A performance comparison of rock detection algorithms. In Proceedings of the IEEE Aerospace Conference.Google ScholarGoogle Scholar
  23. Thompson, D. R., Smith, T., and Wettergreen, D. 2008. Information-optimal selective data return for autonomous rover traverse science and survey. In Proceedings of the IEEE International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  24. Wagner, M., Apostolopoulos, M. D., Shillcutt, K., Shamah, B., Simmons, R., and Whittaker, W. 2006. The science autonomy system of the Nomad Robot. In Proceedings of the International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  25. Woods, M., Shaw, A., Barnes, D., Price, D., Long. D., and Pullan, D. 2009. Autonomous science for an ExoMars Rover-like mission. J. Field Robot. 26, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. AEGIS Automated Science Targeting for the MER Opportunity Rover

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in

                Full Access

                • Published in

                  cover image ACM Transactions on Intelligent Systems and Technology
                  ACM Transactions on Intelligent Systems and Technology  Volume 3, Issue 3
                  May 2012
                  384 pages
                  ISSN:2157-6904
                  EISSN:2157-6912
                  DOI:10.1145/2168752
                  Issue’s Table of Contents

                  Copyright © 2012 ACM

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 1 May 2012
                  • Accepted: 1 August 2011
                  • Revised: 1 July 2011
                  • Received: 1 January 2011
                  Published in tist Volume 3, Issue 3

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article
                  • Research
                  • Refereed

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader